7KLY SURMHFW KDV UHFHLYHG IXQGLQJ IURPUWYXHI :* '*1
and innovation programme under grant agreement N° 101017331 Mot

Wdin

D4.2 Implementation ofLocal CPSloT RSM

Deliverable No. D4.2 Due Date 28/02/2022

D4.2 describes the Resource Descriptors, the Resource Gateway
and the measurement collection software components.

Description

Dissemination

Level PU

Type Report

Work Package CPS-loT Resource Management

Work Package No. N2 Title System

Version 1.0 Status Final

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 &&)dln

Authors
Nameand sumame | Partername lemal
Luis Carrascal INETUM luis.carrascal@inetum.com

Juan Gonzalez INETUM juan.gonzalez@inetum.com

Pablo Lombillo MYS plombill@mysphera.com

Alejandro Medrano UPM amedrano@lst.tfo.upm.es

Eugenio Gaeta UPM eugenio.gaeta@lst.tfo.upm.es

History
Dae vemon Chane
05/10/2021 0.1 Initial TOC

25/02/2022 0.2 Draft content

21/03/2022 0.3 Consolidation of input from partners

23/03/2022 0.4 Final adjustments

25/03/2022 0.5 Final pre-review

20/05/2022 1.0 Deliverable ready for submission

Keydata

Keywords 0T, resources, robot, gateway, integration, platform, layer, API,
PHVVDJLQJ ZHE VHUYLFH DUFKLWHFW X

Lead Editor Luis Carrascal (INETUM)

Internal Reviewer(s) Francesca Manni (PEN) and Marcello Chiurazzi (SSSA)

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

Abstract

'HOLYHUDEOH ' d,P S OHP H-Q@QWISW EdRtQreR 1 rdBSErb &S tkeFindamental
features of the CPS-loT Resource Management System, the ODIN platform laybat supports
the interconnection of available resources. The Resource Descriptor is they component that
defines and manages the data collection infrastructure. The Resource Gateway manages
communication to the ODIN upper layers. The Measurement Collection Softwaf@Gomponents
are used to register and collect performance indicators.

Statement of originality

This deliverable contains original unpublished work except where clearly indted otherwise.
Acknowledgement of previously published material and of the work of others has been dea
through appropriate citation, quotation, or both.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

Table of contents

TABLEOF CONTENTS. ...t s s s s s s e e e am s s a s e e e e 4
LIST OF TABLES ...ttt e s s s e s e e s s e s e e e e ae b s e s s e s e e enrnnnan 5
LIST OF FIGURES....... oot s r s s r e aea s a s e e eermnnas 6
|V 1 {5 16 L I N PN 7
1.1 DELIVERABLE CONTEXT c.iiitiiiuuttttttteaeasaaaitttssiteaaeaaaasssbss et e e e e e s s s ssbb s e e e e e e e e s s assbnnreeaaeas 7
1.2 PLATFORMARCHITECTURBOVERVIEW.uuuiitttiiiieeaeaaaiiitsseeeeaeessaasnsssseeeaaeeeasaansssnneeeaeens 8

2 RESOURCE DESCRIRTOR....ccttutairiiiiiririeis s enr s ss s s s s s s s s 10
2.1 REQUIREMENTIREVIEW. ..citiiiiiiiiiitiiteieea e e e e sttt e e e e e e sttt e e e e e e e s anbbb b e e e e e e e e e s annnneeees 10
2.2 APPLICABLETECHNOLOGY ...ciiiiiuittttteeeaaeaaaaasititsseeaaeesasasssssseeeaaeessaansbsnseeaaeeeesaannsnenes 10
2.2. 1 VWED OFf TRINGS. ¢ettttttettiietieeeeeeeeeeeeeee ettt 10
2.2.2 OPENAPL. ..t a e e e s 15
2.2.3 Comparison between Web of Things and OpenAPRL.........ccccoeeiiiiiiiiiiiiiieeeeee, 19
2.2.4 FHIR e e e 20

3 RESOURCE GATEWAY. ..ttt s irrsss s s s s s s s s ae s s s e s s e s smsans s 23
3.1 REQUIREMENTIREVIEW.uttiiiiiiiiiiiitttteteeeeeeaaaasbte et e e e e e s st n et e e e e e e s s asnbbrneeaaeeeaaann 23
3.2 ARCHITECTURHREVIEW.utttttieettiaitiitetteeeeeaaaasb s et ee s e e e s e ssbbbs e et e e e e e e s s annnbnnneeaaeeeaaaans 23
3.3 APPLICABLESOLUTIONS FORMESSAGINGBUS........cutiiiiiiiiiiiiiiiiiiieie e 23
T N R € |- VTP PRPUPR P 23
3.3.2 RADLDIMOQ. ... 26
3.3.3 BUS SOIULION COMPATISON.uuuitiiiiiiiiiiiiiiieiiiitiiiib bbb eeeeeeeneeneee 28
3.3.4 Features Implemented in the First Versian............cccccuueueeiiieiiimiieiiiiiiiiiiennnnns 30

3.4 APPLICABLESOLUTIONS FOR THEGATEWAY.....ceiiiutttieetaaaeeaaaantttsseeaaaesaaaannssnseeeasessannns 30
4.1 APIMAN . e e et aa e e e e e 30
3.4.2 Features Implemented in the First VErsian.............ccccuueeeeimiieiiiiiiiiiiiiiiiiieeinenns 33

3.5 APPLICABLESOLUTIONS FORTRANSPORTSERVICES......cccietiiiiuitirrieeeeeaaaaniinnnneeaaeeaaannns 33
3.5.1 Apache Camel COMPONENES.........uciiiiieiiiiieiiicii e eeee et s e e e e e et eeeeeaenees 33
3.5.2 EdgeX 10T Platform. oot a e e aaanes 38
3.5.3 Transport SolutioN COMPAIISON.......ciiiiiiiiiiiiiiiaa e e e e e e e eeeeees 41
3.5.4 Features Implemented in the First Version............coooiiiiii i 43

4 MEASUREMENT COLLECTION SOFTWARE COMPONENTS........ccvviirirerneeeeenannnn 44
4.1 REQUIREMENTIREVIEW. . .uutttttieeeseiistitttteeaaeessaassttseeeaaaessasassssseeeaaaesasaanssssseeaasassaanns 44
4.2 ARCHITECTURHREVIEW. .. .uttttttieeesaaiitiiteeeeaaeeasaasttaeeeaaaeaaaaasssssseeeaaaeeasaanssnsseeaaaesasanns 44
4.3 APPLICABLETECHNOLOGY ...etttiiieiiiiittttteeaeaeeaaaassttseeeaaaessaaassssseeeaaassasaanssssseeaaaesaaanns 45
O T R w00 0 1=11 1= 1 S SSPPPPPRR 45
4.3.2 ELKSEACK. ...ttt a e 47

4.4 FEATURESIMPLEMENTED IN THEIRSTVERSION......uuttiiiiiieeesiiiiiiieeeeeeeesssannntnneeeaaaeaaaanns 49
5 CONCLUSIONS AND NEXT STERS.....ccociiieii e e 50

Version 10 | 2022-05-20 | ODIN ©

Odin

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1

List of tables

TABLE1 WOT VS OPENAPTCOMPARISON. ... ittttiaatettiaeeeetiaeaeetiaaeaetteaeeetaaaaeesaeaessnnaaeeeenns 19
TABLE2 FHIRVSHL7V2 COMPARISON.....ccuuiiitiieiiiseeiiieeete e st e e et e e et e eaaeeetsesan e e et eeeanaesanneeenns 20
TABLE 3 CAMEL COMPONENTS. ...t ttttteeeetteeeett e eeett e e aeeta s e aeeea e aaeet e aeesba e aaeabaaeaessnaaaeennnns 38

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

List of figures

FIGUREL ODIN PLATFORMARCHITECTURE......ceuttuuiiieeeaeeieettiiiaeeaeeeeeeeestinnaaaaeaessssssstnnaaaaassesssnnes 9
FIGURE2 WEB OF THINGS DESCRIPTION.ciitittttiieeeeeeeeeetttiiaeeeeeeseeeattiaaaeeeeessessstannsaaasaesssnnns 12
FIGURE3 WOT THING DESCRIPTOREXAMPLEcuttuiiieeeeeiiettiiiiaeeeeeeeeeerttaaaaeeeaaessesssnnnaaaasessssnnes 14
FIGUREZ OPENAPIDESCRIPTION. ..cttttuttteeeeieittttiaaeeeeeeeeettttaaseeeaasssssstannaaaasssssssrssnnaaaaaseesssnnes 16
FIGURES OPENAPI THING DESCRIPTOREXAMPLEL.......cciiiiiiiiiieeeeeeeeeeeetiee e e e e e ee e ettt e e e e e e eeeannees 17
FIGUREG OPENAPI THING DESCRIPTOREXAMPLEZ..........cietitiiieeeeeeeeeeeatiiaeeeeeeeeeeesttanaeaeaeeessnnens 18
FIGURE7 KAFKAARCHITECTURE WITH PARTITIONScciiiiiiiiiiieeeeeeeeeeettiieeeeeeeeeeessttiaaeaeeaeeesnnnns 25
FIGURES RABBITMQ COMPONENTS.uutittiieitiieetteeeteeetiaeesteestaessteestnesstaestaneestaestnessnaeesnns 27
FIGURED APIMANGATEWAY SCHEMAccttttitiieiiieeeeeeeeeeeeeeeeeeeeseeeeeeseeseeesteseaeseesararetaaaeraaaaeeees 31
FIGURELO APIMANDATA MODEL.....ccttttttittieieeeeeeeeeeeeeeeesseeesesessseessseseesseeseretrrrtrtrrrtrrerrrrrrerree 31
FIGURE11 APACHE CAMEL CORE CONCEPTS ANDARCHITECTURE......ccciviiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeea 34
FIGUREL2 EDGEX MISSION....ccitiiiiiiiiiiiiiiieteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeesseeaeeeaaaaasaeaaaaeaaaareaaeeeees 38
FIGUREL3 EDGEX ARCHITECTUREcetttiiiiieeieeeeeeeeeeeeeeeeeeeesesesssseesaseseeesasseessssseetareerrerarrraeaeeeees 40

Version 10 | 2022-05-20 | ODIN ©

file:///C:/Users/Luis/Documents/ODIN/WP4/ODIN_D4.2_Implementation_of_Local_CPS-IoT_RSM_Features-AM_AG_FM_PL_MY.docx%23_Toc103896808

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 ‘g)dln

1 Introduction

This deliverable describes the fundamental features of the CPS-loT Resourtéanagement

System, the ODIN Platform layer that supports the interconnection of alable resources. The

Resource Descriptor is the key component that defines and manages the data collection
infrastructure. The Resource Gateway manages communication to the ODIN uppewykers. The
Measurement Collection Software Components are used to register and coteperformance

indicators. All these components alongZLWK WKRVH GHVFULEHG LQ GHOLYHUDEO
of Advanced CPS-,R7 560)HDWXUHV Y r PDNH XS WKH FRUH 2',1 FRPS
management and interaction.

1.1 Deliverable context

The following table sets the context of this deliverable:

PROJECT ITEM RELATIONSHIP

7KH GHOLYHUDEOH LV UHOHYDQW WR 2',1
defines the software architecture of the ODIN platform to cover medic:
and technological requirements.
Objectives The WP4 objectives are:
x Specification of the CPS-loT RMS requirements based on inp
from WP2
x Specification of KPI and metrics collection framework

There is no specific contribution to any exploitable results. Instead, tf
Exploitable results work presented will be the guide to create the software architecturefc
solution components.

D4.2 is attributed to WP4 tasks WP4 - CPS-loT Resource Managemer
System [Months: 342] MYS, CERTH, UPM, INETUM. Task4.2 CPS-loT
Resource descriptor module (INETUM) [M3-86], is the main
responsible of this deliverable.

D4.2 is a key deliverable for milestones PREPARATION (MS:
Milestones PROCUREMENT PROCEDURE SIMULATION (MS2), a
IMPLEMENTATION (MS3) phases of the project.

Report on the Data
model, ODIN semantic
ontology, datasets
harmonization plan.
CPS-1oT Resource
D4.1 Management System
Specification
Implementation of Local
D4.2to D4.4 CPS-1oT RSM Features
vl tov3

Workplan

D3.2

Deliverables

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1

D4.5 to D4-7 Implementation of
Advanced CPS-loT
RSM Features vl to v3

KPI1 Evolution Report (|

D7.2 tD7.7 0 1X)

Pilot Studies Evaluation
D7.9 Results and
sustainability

The guidelines provided in this deliverable can h

Odin

4.5Implementation of
Advanced CPS-loT
RSM Features v1
Regarding the
collection of KPIs
about DevOps
activities.

Regarding component
evaluation results of
unit/integration
testing.

elp in minimizing the

following risks identified in the Grant Agreement:

Risks X Technologies not available in time
X Technical problems during component/m
x Complexity of unification procedure

1.2 Platform Architecture Overview

The following diagram shows an overview of the ODIN Platform
components described in this deliverable are marked:

Version 10 | 2022-05-20

odule development

architecture ®&re the

| ODIN©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1

Platform manager
Hospital administrator
Clinician

Researcher

Data scientist
Logistics department
Security department

Odin

Other ODIN instances
Other services

ODIN platform instance

$
|

Keycloak

ODIN
dashboard

I

Keytloak

| Platform services

-y
| Resource

| management /
1 discovery

Resource
manager

Blockchain
(Hyperledger)

Local

I
I
I
|
|
1
Resource Descriptors |

-———

Blockchain
node

1
! i Permission
linfrastructure monitoring | Orchestration sPARQL handiing
| Resource monitoring | Choreography Informed consent
. Feedback [Resource -
Keycloak Documentati = Metric Resource Transaction
! 3 il raph %
manager on - ectiwn . collection il & menf' P CanechK federation handiing
RSN (P
| Transport services: S ic and semantic translation I
i
: Enterprise Service Bus (ESB) - Resource Gateway (Kafka) | I
|

I
- e = e e -

() (o) () () () (o)

() () () ()

ensors (motion, temperature, etc.),
IoT devices ags and beacons, Wearables,
meras, Smart boxes,

Connected medical devices

ROS, RAMAIP, Hosbot,
Tiago, Transparent robot

i In-robot Al

Human

i modeling

i e umal
mapping, system

| navigation interface

MQTT, CoAP, HTTPS HTTPS HTTPS sa s
marT XMPP, IPv6, REST REST REST NoSQL NosaL HTTPS HTTRS
oo, uk, €SV, Excel, JSON
DTLS, AMQP,
LLAP and DDS
Robot Front-end Back-end ik Other REST
| gateway l 0T gateway l applications applications A o W HL7 APY i
Partigle loT Raspbrry Pi Mobile apps laT platforms ~ Emergency prediction d

Zighee, Web apps Cloud servers _Emergency management
Bluetonth, Dashboards High-level planning / optimization
WiFi, Z-Wave, Context awareness
5G, RFID, NFC Big data analytics

Figure 1 ODIN Platform Architecture

Version 10 | 2022-05-20 | ODIN©n

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 ‘g)dln

2 Resource Descriptor
2.1 Requirements Review

The different resource types that will be managed by the ODIN Platform anearied and
heterogeneous. Therefore, the Resource Descriptor provides the abstraction yiar that is
necessary for a homogeneous description of data. It will specify the datdructures to support
multi-domain exchange of information, and provides common interfaces and Wik aligned with
the semantic models defined in WP3.

The information that the Resource Descriptor manages can be, but not limited to:
X Semantic Resource Description
X Resource Services
X Resource Federation
X Resource Privacy, Security, and Trust
X Resource Metric Reporting
X Resource Health
X Resource Uls
X Resource Administration
X Resource Documentation
X Resource Deployment

X Resource Communication

2.2 Applicable Technology

Three different technologies have been analysed to implement the Resource Descriptdhey will
be described in detail in the following sections. In order to decide wh&tchnology will be used
several possibilities will be explored, like using one of them or evencambination of them. The
result of this decision will be described in the following version of this deliverable.

2.2.1 Web of Things

IoT technology today has one main downside, which is that devices do not speakcammon
language. In fact, there are hundreds of protocols and standards that, in mosases, are not
compatible with each other. Therefore, the first objective of WoT is toeate a "lingua franca"
common to all devices.!

1 https://webofthings.org/2017/04/08/whatis-the-web-of-things/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

Web of Things (WoT) is a W3C initiative to overcome interoperability barriers betwdeT devices.
This initiative proposes that "things" use web standards to communicate with easther and share
information. In this way the web would not only consit of digital elements but uld also of physical
objects in the form of virtual representations.

This common language starts to be built by standardizing the description of deeiin a way that

is understandable by machines. This allows both humans and computers or other devices to
discover loT things, access their information and interact with them. This description of a
particular thing is called the thing descriptor and it has been decided by conventighat it should
be written in JSON format as it allows for the addition of contexts that makenhighly specific while
maintaining machine compatibility. It consists of a set of interactions base a small vocabulary
that makes possible both the integration of various devices and the interoperatyiliof various
applications.

Thing Descriptor(TD) is the most important block in the WoT architecture as it establishes a
standard that describes each object and the way it is used. This information has taeb
understandable by a machine since communication between objects is prioritized and thia why
the JSON/JSONLD format has been chosen for the description of objects, since it allowslding
contexts that make it highly specific while maintaining compatibility with machine$A TD is
instance-specific (i.e., describes an individual Thing, not types of Things) arid the default
external, textual (Web) representation of a Thing®"

Apart from the Thing descriptor WoT is composed of several interrelated blocks, these are:

x Protocol Binding: It is a continuation of the Thing Description that provides information on
how to establish an interface for each network-facing object for diffent protocols. This
allows not only HTTP to be used, but, WoT proposes connectivity from thewsttural base
with all web protocols such as CoAP, MQTT or WebSocket.

X Scripting APL It is an optional block that provides a standard for the creation of object
control apps. It consists of a WoT Interface that allows scripts to perfor the main
operations on a Thing, such as exposing or consuming it, addr read properties, or
retrieve its Thing Descriptor. It uses JavaScript, resembling Web browser APIs.

X Security and Privacy Guidelines: Informative document that establishes guidelines for
secure implementation and configuration of 0T objects. W3C working group ha<idtified
a wide list of authorization schemes that could be added to the Thing Descriptor
Examples of supported schemes includeise of API key, OAuth2.0, or Bearer tokens.

All the blocks above are implemented within a software runtime named Servient, wiican act
indifferently as a Server or as a Client. In the first case, the Servient is¢d0 host and expose
Things, i.e., it takes the Thing Descriptor as input and creates a dynamic object gerve the
requests for accessing the exposed properties, actions, and events. In theecond case, the

2 https://www.w3.org/TR/wot-architecture/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

Servient is said to consume Things, i.e., it creates a runtime resourceadel that allows accessing
the properties, actions, and events exposed by the server Thing on a remote deviée.

Thing

Behavior

k]
]

Interaction Affordances:
Properties, Actions, Events

Data Schemas (TD Payloads)

- .

WoT Thing
Description

N

Security Configuration: API keys,
OAuth2.0, Bearer tokens, etc

e e = o == T E e e e === == ==

Protocol Binding(s): HTTP,
HTTPS, MQTT, CoAP, etc

Figure 2 Web of Things Description*

The thing descriptor has 4 components:
x Textual metadata of the thing

x Interaction Affordances indicating how the thing is used, how the consumer can interact
with the thing

X Schemas with notation for machine-understandability

x Web links that express relationship with other things or pages.

There are three types of Interaction Affordance: Properties, Actions, artelents.

3 https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-valation-01

4 OpenAPI Thing Descriptions for the Web of Things Tzavaras et al.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

x Properties expose the state of a thing. This state can be retrieved (read)nd optionally
updated (write).

x Actions allow invoking a function of the thing to cause a change of state.

x Events imply the asynchronous sending of information from the thing to the consumeroN
state is sent but state transitions.

In the ODIN project this Thing Descriptor could be used to grant accessibility to &lle resources
in each hospital regardless of the communication protocol they implement ¢g, HTTP, Bluetooth,
MQTT, ZigBee, WebSocket). This metadata accessibility would allow things metddato be
exposed in the platform so that other Things or clients (i.e., services or usersan interact with
them and manage its functionality.

One of the main paradigms of WoT applications is the use of well-eblished Web architectural
principles and protocols to seamlessly interconnect intelligent objects. Thesenclude
Representational State Transfer (REST), defined by Fielding and Taylor, as thain architectural
interaction pattern, and Hypertext Transfer Protocol (HTTP) as the applicaticayler protocol. In
WoT RESTful applications, a smart object (typically running an embedded Web servepitally
interacts with Web counterparts by exchanging requests and responses over HTTP. Altlgh it
is a standard and well-known application layer protocol, it can be too cumbgme and inefficient
for implementation on limited, battery-powered devices. One way to implement Wdn these
objects is through a HomeHub, built for example with Raspberry Pi. This would communicate
with the rest of the legacy objects and show them to the web providing them with Bhing
Description and connectivity using the necessary protocol$.

5 Automatic generation of Web of Things servients using Thing Degations t Iglesias-Urkia et al.
5 The Web of things: Challenges and Opportunities Dave Raggett 2015

" Towards a Web of Things-based system for a smart hospitalMezenner et al. 2020

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 &&)dln

I 1
l|{ |
2 "@context": "http://www.w3.org/ns/td",

3 “id":lggfp:dev:ops:324?3~WOT5mart500r

4, "title": "hySmartDoar", |

5 "securityDefinitions": {

6 "Thazsic sc™: {"scheme": "basic®, "in": "

| header"} |
T| }r |
8 "security”: "basic sc", |
9, "properties": { |
10 | 'state": |{ |
11 "type": "string", |
12 "forms": [{"href": "https://mysmartdoor

| .example.com/state™}] |
13| } |
14, 1}, |
15 "actions": { |
16 "Fook": | |
17 | "forms": [{"href": "https://mysmartdoor
13| : .example.comflock“}? |

| r |
19 | Tanlack™ s |

20 "forms": [{"hraef": "httPs:KHmysmartdoor
21| : .example.com/unlock"”}] |
| [
22 ki |
23 "eyvents": | |
24 "opening": { |
25 "description™: "Smart door opens", |
26 "data: {"type": "srring"},
27 "Forms": { |
28 "hrefh: "https:ffmysmartdoor.axample.
| com/open",
29 , "subprotocol”: "longpoll" |
30 1] |
31 } |
32| 1 |
33| } |

Figure 3 WoT Thing Descriptor Example®

Figure 3 shows an example of a Thing Descriptor for a smart door that contains:
a) A context attribute which extends the definition with additional vocabulary termf.ine 2)
b) The identifier of the device (Line 3)
c) An indicative title (Line 4)

d) The security configuration of the service (Basic Authentication in this example). (LiBe
8)

8 OpenAPI Thing Descriptions for the Web of Things Tzavaras et al.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

e) Interactions supported by the smart door; the state property, the lock and unlock aotis,
the door open event (i.e., the state property of the door turning to open)

f) The forms field that describes how each interaction can be performed; it speeii the
protocol that should be used (i.e., HTTPS) and the operation endpoint.

The endpoint for getting the last smart door status value is specified the Properties object
which is in the Forms array. The protocols and endpoints used to perform lock andlaok actions
are specified by the Actions object. The protocol, endpoint, and subprotocobff subscribing to
smart door open events are specified by the Events object.

2.2.2 OpenAPI

OpenAPI specification, formerly known as Swagger, is a standardized format for describing
Application Programming Interfaces (APIs), resources or services understandalidg humans and
machines. This description contains information about different aspects of the service such a
resources, endpoints, operations, parameters, and authentication and allows anye referencing
the APIto understand the service®

With OpenAPI, an API can be described in a uniform way. This is known as'&PI definition" and
is generated in a machine-readable format. In particular, two languages aresed: YAML and
JSON and a large set of properties are available for composing service desciits. Technically,
YAML and JSON differ only slightly, so it is possible to automatically convert anisging API
definition from one language to another. However, YAML has a clearer structuagad is easier for
people to read. The differences are that, Basically, JSON does not support conemts. On the
other hand, YAML requires hyphens before array items and relies heavily amdentation, which
can be cumbersome on large files (indentation is entirely optional in JSON).

OpenAPI does not provide a mechanism for detecting or for dealing withmbiguities andto
eliminate these ambiguities, OpenAPI properties must be semantically annotated aasisociated
to entities of a semantic model. This mapping can be achieved representing Op&PI descriptions
using ontologies, for example ODIN ontology described in deliverable D3.Phese ontologies can
capture all information in a Semantic OpenAPI description. Properties ofasses are mapped to
classes as well.

9 https://es.wikipedia.org/wiki/Especificaci%C3%B3n_OpenAPI

10 https://swagger.io/specification/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 ‘g)dln

OpenAPl 3.0
Info
Sarver ‘ i
Paths
‘ ExternalDocs
Components
Responsas Parameaters Examplas
RequestBodios Headers Links
Callbacks Schamas SecurntySchames

Figure 4 OpenAPI Description!?

In contrast to WoT Thing Descriptar OpenAPI Documents can be implemented for service
description. As Figure 4 shows, it consists of many parts called objecthat specify a list of
properties. For example, the Info object provides non-functional information such as the name of
the service, service provider, license information and terms of the service. Oock, for example,

is the Info object, which contains information not relevant to the operatiasf the service such as
the name of the service, its provider, licenses, or conditions. There ardsa Documentation
objects that provide important information, such as the Documentation, Service @ut, which
details where the API servers are located, or Paths object that holds &tle available endpoints.
finally, the description service contains all possible Tag objects: a Web Thitayg, a Properties
tag, an Actions tag and a Subscriptions tag?

1 OpenAPI Thing Descriptions for the Web of Things Tzavaras et al.
12 OpenAPI Thing Descriptions for the Web of Things Tzavaras et al.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 ‘g)dln

type: string

default: SmartDoor

x-kindOf: "http://schema.org/identifier’
name :

type: string

example: IoTSmartDoor

x-kindOf: "http://schema.org/name’

1 y schemas:

2 Webthing:

3 required:

4 -1l

g - name

7 type?Pobject

8 x-refersTo: 'http://www.w3.0rg/ns/sosa/
Actuator' .

9, properties:

0 ol [

1

2

3

4

5

6

7

ot ot o

Figure 5 OpenAPI Thing Descriptor Example 113

In addition to properties and actions, the Thing can also support subscriptions. Subscription is
the result of subscribing to a particular resource in the Thing (such as a partieul property or
action) and notifying you of changes in the Thing's state information (sucls aew temperature
values). Subscriptions are stored in the storage structure and can be retrieved via teabscription
ID (Thing Descriptor supports subscriptions to unsaved events).

x-refersTo is used to semantically associate the Actuator type of the smart dodo the SOSA
ontology. Thex-kindOf extension property is used to semantically annotate the Thing propés
(i.e., id, name) with concepts in www.schema.org vocabulary.

13 OpenAPI Thing Descriptions for the Web of Things Tzavaras et al.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 &&)dln

paths:
*/zubscriptions/ ({subscriptionID}”:
delete:
tags:
- Subscriptions
summary: Delete a subscription
description: reject ths reguast with
an appropriate status code or remove
{unsubscribe]l the subscription and
return s 200 OK status code.
operationId: deleteSubscriptiaon
x-operationType: "https://schema.org/
Deletebction’
parametars
- name: subscriptionlD
in: path
description: The id of the specific
subscription
reguired: trus
style: simple
explode:r true
schema:
type: string
example: SHfdlifaccocdetbelbdabBbotb
responses:
i 1 4
descripticn: OF
FApn4r .
description: Neot found

=l L i B =

lad d =53 W2REE

it [20 QT T L i

[T T T Y O A g —
h— —————————— O OEE W W S BN WS WS SR WS R R BN BRSO OmE Em E

Figure 6 OpenAPI Thing Descriptor Example 214

The example in Figure 6 shows semantic annotations for smart door operations. In this cases th
operation is to delete the subscription using the subscription ID. The value of tipeoperty Is a
description of the operation type given by a URL that points to this semantic descriptioThe
action types in the www.schema.org vocabulary provide a detailed hiemehy of action subtypes
that can be used in properties. Humans can see the operation description to understarits
intended purpose, but the machine needs additional information provided by the x-operationType
extension property.

14 OpenAPI Thing Descriptions for the Web of Things Tzavaras et al.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

2.2.3 Comparison between Web of Things and OpenAPI

Table 1 WoT vs OpenAPI Comparison®

WoT OpenAPI
ADVANTAGES: ADVANTAGES:

x WoT Thing Descriptor can be x Enriched with text that can be
enhanced with a context field for understood by humans providing
converting the JSON format to JSON- both, human and machine-readable
LD [2] descriptions of Web services [1]

x It can handle many protocols such as x OpenAPI defines services in a way
CoAP, MQTT, WebSocket. [3] that eliminates ambiguities and

x WOoT description uses events to provides Web Thing service
represent state transitions (simpler) descriptions which are uniquely
[4] defined and discoverable 6]

x WOoT is specific for IoT and it applies x OpenAPI meets the HATEOAS
to any loT application domain, from requirement of REST architectural
consumer electronics to heavy style [7]
industries x Itis possible to convert an OpenAPI

description to an ontology

x OpenAPl is supported by a complete
tool pallet (e.g., editors, description
validators and client SDK generators)

DISADVANTAGES DISADVANTAGES

x Description is a much shorter x Does not support JSON-LD [2]
document [1] x only supports HTTP(S) and webhookg

x Ambiguities: The same property may [3]
appear with different names [6] x Subscription to property changes is

x Does not support HATEOAS more complex [4]
requirement of REST architectural x Simpler security scheme than WoT
style [7] [5]

The main common disadvantage of these two technologies is that it is neceggao handwrite the
description of each resource on the ODIN platform. These are many resources acrods entire

15 OpenAPI Thing Descriptions for the Web of Things Tzavaras et al.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1

Odin

infrastructure and considering healthcare, technologies such as FHIR already hadescriptions
implemented for many of the resources used in the smart hospitals being proposed.

Main Differences

Compared to OpenAPI, Thing Descriptor is a more abstract description of a Thing that
lets the client interact with the device (description is a much shorter document).
OpenAPl is detailed and complete: It fully describes the functionality of a device and
provides all the information a client needs to use the services it provides.

OpenAPI resorts to JSON or YAML and WoT to JSON or JSORDD.

A Thing Descriptor may also refer to extra loT protocols (e.g. CoAP, MQTT), while
OpenAPI only supports HTTP(S) and Webhooks.

Thing Descriptors can describe events, while OpenAPIl documents can describe
subscription operations using Callbacks or Webhooks properties added to a Path object.
Similar Security scheme but more detailed in WoT Thing Descriptor.
Both have ambiguities but OpenAPI can eliminate them by mapping to semantic models

(ontologies).

OpenAPI meets the HATEOAS requirement of REST architectural style while WoT does

not.

2.24 HHIR

The HL7® FHIR® (Fast Healthcare Interoperability Resources) standard defines how hbahre
information can be exchanged between different computer systems regardless of hatis stored
in those systems. It allows healthcare information, including clinical andministrative data, to be
available securely to those who have a need to access it, and those who have the right to do
so for the benefit of a patient receiving care. The standards developmewotganization HL7®
(Health Level Seven®) uses a collaborative approach to develop and upgrade FHIR.

Table 2 FHIR vs HL7v2 Comparison

FHIR

HL7

It is a new standard

It simplifies implementation withou
sacrificing information integrity

Can be used standalone or integrated
Supports and encourages alignment

to HL7's previously defined patterng
and best practices

It has been in existence and in use fo
20 years.

It was the first information exchange
standard and is one of its most widely
adopted

Uses messages composed of re-
usable segments to communicate
healthcare-related information

16 https://www.hl7.org/fhir/

Version 10 |

2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

x All exchangeable content is defined ag
a resource.

x Itis developer friendly

FHIR resources can be defined by thing descriptions, but this happens at two lesalf varying
complexity. The first level consists of simply representing things that use FHIR resmes with a
thing descriptor. The second level aims to deepen the definition of FHIR resousc® ingest and
use the data produced by these services.

In the first case, to describe a resource, for example, which generates FHIRRdrmation, this data
production can be represented as an action. On the other hand, for FHIR resource camsption
to produce data that can be interpreted by machines, it is necessary to go beyond deihg an
action in the Thing Descriptor. The FHIR specification defines its resources usingemplate-
based data model, making human interaction necessary for the interpretatiorf t$s meaning. To
create machine-interpretable representations, one needs to transition from syntactmodels
based on serialisation formats to formal semantic models that are serializatiogrestic. In other
words, FHIR resources need to be described using a formal ontology.

The main advantage of using FHIR in the ODIN project is that it is a formalized and matlr
definition accepted worldwide for healthcare use cases. This implies that tivast majority of the
services and resources used in the proposed smart hospitals are already defthén the FHIR
documentation. FHIR devices include durable (reusable) medical equipment, implantable
devices, as well as disposable equipment used for diagnostic, treatment, and search for
healthcare and public health, as well as devices such as a machine, cellphone, roputer,
software, application, etc. The Device Definition resource is used tdescribe the common
characteristics and capabilities of a device of a certain type or kind, e.g.,&@rtain model or class
of a device such asan x-ray model or personal wearable device model, whereas a Device
resource documents an actual instance of a device such as the actual x-ray machiribat is
installed or the personal wearable device being worn. Therare not only devices among the
resources described, FHIR has a wide variety of resources in its description, all reldtto the
health sector. Among these we can find locations, personnel, diseases, orgaations,
medicines... This is very convenient for the ODIN project since most of the rasmes to be used
are already defined*®

17 Gatekeeper, Web of Things (WOT) Reference Architecture D3.3.2

18 https://build.fhir.org/devicedefinition.html

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

FHIR has been working for years, it is limited to the syntactic part delegateenfectly all the
semantic terminology and allows the use of a great variety of clinical technolagyesides, all the
operations and relationships have to be established, which is not as incamwient as having to
write one by one all the descriptors as it happens with WoT or OpeA Finally, a capability
statement must be defined. This is a set of capabilities (behaviours) of BHIR Server for a
particular version of FHIR that may be used as a statement of actual server @ionality or a
statement of required or desired server implementatiof. On the other hand, FHIR has many
other advantages such as being open-source, free, easy to implement and developer-friendly

19 https://www.hl7.org/fhir/capabilitystatement.html

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 ‘g)dln

3 Resource Gateway
3.1 Requirements Review

The Resource Gateway oversees connecting all the resources to the platforamd to the rest of
the services available in it.

Most important requirements are:
X Allow easy connection of new resources.
X Follow an Enterprise Service Bus approach with a messaging system.
X Be the gateway to the rest of the services.

x Allows access to the services in a secure way

3.2 Architecture Review

From the D3.10 ODIN platform v1, the architecture follows a service bus where all tlservices
can communicate, as depicted in Figure 1.

Important services or components of the architecture proposed are:
x The Service Bus, which allows exchanging messages among services in the platform.

X The Gateway, which oversees connecting users and external services the platform in
a secure way.

X The transport services that connect to the resources, such as loT, robotand other
services. Those services read or write information from and to the resoursédridging
protocols and making them interoperable through the platform.

D4.1 CPS-loT Resource Management System Specification reviews several technologieshi®
used for the whole architecture of the CPS-loT system.

In the following section, a light overview of concrete solutions of thosechnologies will be carried
on discussing the best options.

3.3 Applicable Solutions for Messaging Bus
3.3.1 Kaflka

As Kafka websité® announces, Apache Kafka is an open-source distributed event streaming
platform used by thousands of companies for high-performance data pipelines, saming
analytics, data integration, and mission-critical applications.

20 https://kafka.apache.org/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

Kafka follows the pub/sub architecture and is useful for data integratiors ghey claim and is based
on SCALA languagp.

Most important attributes of Kafka are, scalability, high throughput, didtited, reliability as
storages every message sent and high availability. All the mentioned attributes are mpied as
must in D2.2 Hospital Requirements Report.

Moreover, the ecosystem it has, makes Kafka very appealing as it suppoltsgs of client libraries
to be used in applications to read, write, and process event streams, in addition i3 out-of-the
box support for other tools, such as databases, message systems, analytidgpforms and many

more.

Kafka is based on several concepts through which covers its mentioned attributes:

X

Server: Kafka servers do have 2 implementation modes and are the base of the
infrastructure. The first mode is the Broker or storage, where messages areceived and
stored in topics. The second mode is supported by Kafka Connect, which connects toeh
integrated systems to read and write event streams from and to Kafka brokers. &h
servers can run individually or in cluster across different datacentres or cloud regs.
Each Kafka cluster can also connect to other Kafka clusters. In a cluster, iKKafka server
goes down, the rest take its workload to continue working.

Client: clients make possible to read and write data to applications and services @
distributed way. Lots of client libraries exists and specific libraries to process streams are
also available like Kafka Streams and a REST API to connect diredtiycase no library is
available.

Event, topics, Producer and Consumer: these are the same concepts in pub/sub
architecture?*. To summarize, Producers create messages in the form of Events that are
stored in Kafka in Topics or themes that Consumer read.

Partition: topics are distributed among several Brokers, so the workload is dikmted also,
providing scalability. If a copy of the topic is created in another datacentre, thenew
provide fault-tolerance and reliability.

21 please refer to D4.1 CPS-loT Resource Management System Specifiitan. Section 6.5 Event Driven Architecture.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

Storage
Event sent

and appended

Topic P11 BN ,\topanition 1
0

P2 -... \ Producer client 1 D

s N “~______— Producerclient2 (55

Figure 7 Kafka Architecture with partitions

Security

The default setup®lets any producer or consumer, write, or read messages to and from any topic,
which is not very appealing in some cases where multitenancy is implemented with one cluster.

Kafka allows several security measures beyond partitions which are not gbected. SSL
encryption is available at the cost of some performance degradation. £§mutual certificate
authentication) or SASL authentication (Simple Authorization Service Layer) which supports
several kinds of authentication, is also a good option when there &need of identifying which
applications can connect to the system. To complete the security optionsy get a tighter control,
authorization can be accomplished using Authorisation Control Lists, so using a rutased list, it
can be defined exactly what producers/consumers can do.

Metrics

Kafka uses Yammer Metrics for server and cluster operation but uses its own Kafketrics when

it comes to the clients connecting to Kafka, so they use another format, bibioth expose them
through JMX, which helps caring about the messaging system wellness. There are lofswetrics
available®, mostly related to messages statistics and cluster status. Depending on the component
(server, producer, stream, consumer) the metrics change.

Deployment and setup

Regarding deployment, Kafka does not offer its own solution to be useah &Kubernetes but can
be used using StrimZA*. This eases its configuration and deployment as this opensource project
maintains Kafka images and tools to use it with Kubernetes.

2 https://kafka.apache.org/documentation/#security
2 https://kafka.apache.org/documentation/#monitoring

24 https://strimzi.io/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

Regarding the setup, Kafka can be configured using files or programmaticallywhich offers a
dynamic management in case it is needed to be integrated form a management compent for
example.

Other options available are automatic creation of topics or manual creation, addiramother plus
of dynamic behaviour and automation facilities.

3.3.1.1 Usage in ODIN

Kafka is useful for several use cases, but the most important and the onesatican be profitable
for ODIN are:

X Messaging like a message broker would do, but with better throughput than RabbitMQ or
ActiveMQ, which are traditional message brokers.

X Metric and aggregation and data availability to be processed. This wayaka can help
routing the data to the right tools to monitor systems or applications and prose IoT data
for example.

x Stream processing is another field were Kafka shines, providing a very posid tool to
perform real time or batch processing. This way, data gathered from IoT diees for
example, can be processed to enrich the data to get more complete messagdhat are
meaningful for other services or applications connected to Kafka.

Although is very powerful, Kafka lacks routing capabilities or priority queuas it serves messages
in the received order.

Defining and implementing a very rich messaging protocol and a careful topelection should be
done if we decide on using Kafka. This decision will be taken in the next phase of tiask.

3.3.2 RabbitMQ

RabbitM@”® is a traditional messaging broker based on the AMPQ protocol which supports
pub/sub and point to point communication, but it also supports other protocols suchseSTOMP
and using and HTTP bridge can send MQTT messages with some limitation.

RabbitMQ is also open source as Kafka, and beyond pub/sub which is the mechanigmost
aligned with ODIN's architecture, its main attributes are also aligned with ODIN requirenis.

Message queuing with prioritization and routing based on topics or message content providie
roots for data integration requirements.

% https://www.rabbitmg.com/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

Figure 8 RabbitMQ components

In Figure 8 it can be seen the usual pub/sub components plus the roots of the broker, where the
Exchange component is in charge of routing the messages to the correcfjueue using defined
rules.

Security

Security is assured with authorization and authentication mechanisms such as OAUTH, and
support basic User-Password, HTTPS and Lightweight Directory Access Protocol (LBPor other
sources of identity and authorization such as digital Certificates.

Reliability is achieved with the ability to check message delivery status with confirmation
acknowledge and data replication using Raft consensus algorithm on cluster mode and Qum
gueues, which are better than just data replication, avoiding process faults or data loss.

High availability through cluster and data federation is also available using plagithat make
possible to have nodes in a cluster dispersed geographically.

Metrics

Another plus for RabbitMQ it is the Management Ul it must control all the functiditg. This helps
getting a one place to perform all the logistics and monitoring.

Monitoring the bus and getting metrics from the nodes also is a very gooddture. MQRabbit can
be easily integrated with Prometheus and Graphana to do so. Monitoring the wealthtbé bus is
key to keep things working. Number of messages sent and remaining in the queues, and othe
metrics are also important to manage the message bus status. By the way MQRabbit repor
most usual infrastructure metrics such as CPU, memory usage, throughput among others.

Deployment and Setup

RabbitMQ offers good integration with Cloud and DevOps tools, making it a good @e~vhen high
speed development is a requirement.

Bare metal deployment is useful for small projects, but big ones need tools such a®dker or
Kubernetes, to manage clusters and RabbitMQ offers 2 plugins for Kubernetes. Eiggugin is
Cluster Kubernetes Operator that automates provisioning, management, and operations of
RabbitMQ clusters running on Kubernetes. The second one is RabbitMQ Messaging Topology
plugin, which manages RabbitMQ messaging maps within a RabbitMQ cluster using the
RabbitMQ Cluster Kubernetes Operator.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

As previously commented, RabbitMQ offers a Management Dashboard so once startedeth
broker or cluster, it can be managed. On the other hand, part of the setup mube handled using
configuration files.

3.3.2.1 Usage in ODIN

As Kafka, RabbitMQ is useful to be used as the service bus where all theraponents and services
connect to exchange data. The routing capabilities, queue support and pub/sub makiegood to
connect high level components and services of ODIN architecture.

Due to its performance limitations, data analytics or high volume of datategration may not be
its strong point. It also lacks stream processing but may be integrated with other tilsoand
libraries.

3.3.3 Bus Solution Comparison

In the following table, a light comparison among the solutions is performed tesduss which one
is better for implementing the messaging bus.

Atiutes (e 09 | MQRalbi | Kabe

Requirements fit 9 8 Kafka is more oriented to streamsg
and has less options than RabbitMQ
out of the box®

Ease of adoption 8 7 More is better. Reference$?’ point
that Kafka is harder to adopt

Scalability 7 10 Ping checks and some monitoring
task, plus confirmation of messages
have a bad impact on RabbitMQ.
Kafka has horizontal scalability whilg
RabbitMQ has vertical scalability.

Relibility 8 9 Both support good means to deliver
and track the messages

Security 10 10 Both include similar options
(Kerberos, OAuth, etc)

Data integration 10 10 Both serve for data integration.

% https://www.cloudamgp.com/blog/whento-use-rabbitmg-or-apache-kafka.html

27 https://freshcodeit.com/blog-introductionto-message-brokers-part-1-apache-kafkavs-rabbitmgq

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1

Odin

Support 8 8 Documentation is well supported
and there are lots of resources for
both

Deployment facilities 10 8 Kafka does not offer Operators for
Kubernetes, while RabbitMQ does.

Size of project to be used | 5 10 More is better. RabbitMQ is for smal
to medium projects, Kafka is for
medium to big projects. Scale is
assuming that ODIN is mid to big,
Averall recommendations from
references’®

License Mozilla Apache Both are open-source. Kafka has

Public License 2.0 Apache License 2.0 (non-copyleft)
License while RabbitMQ has Mozilla publig
2.0 license 2.0 (weak copyleft)

Number of projects using | 1831 1251 Referenceg®

it

Number languages 10 5

Monitoring 10 10

Hard dependencies on | Developed | Apache

other projects or | with Erlang | Zookeeper for

solutions shared

configuration

Innovation impact 5 10 RabbitMQ is a traditional messaging
broker. Kafka is being used in top
projects not only for analytics buf
also for messaging bus by
enterprises such as Zalando and
other top ones.

Routing capabilities 10 0 It is still under analysis whethe
routing or storage is needed

Storage 0 10

Multi-tenant 10 10

Red time 0 8 RabbitMQ is not suitable for real

time. Kafka can work in near real

28 https://freshcodeit.com/blog-introductionto-message-brokers-part-1-apache-kafkavs-rabbitmg

2 https://stackshare.io/kafka

Version 10

| 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 ‘g)dln

time, being end-to-end latency from
producer to consumer as low as
~10ms if the hardware and network
setup are good enough.

Pub/sub 10 10

Queuing 10 9

Other solution that has been considered is MQTT which is not as suitable as theesented ones.
MQTT is suited to support communication over an unreliable network and scales dhaAlso,
ActiveMQ is another option similar to RabbitMQ.

3.3.4 Features Implemented in the First Version
For the first version of the platform the list of features to be implemented are:

X A mechanism to decide the list of the topics that need to be created in the messaging bus
related to resources, services, and storage

X A mechanism to implement response to the message sender, when needed in casesth
bus does not support it.

X The configuration of the bus to work under the situations to be managed

3.4 Applicable Solutions for the Gateway

3.4.1 APIMAN
APIMAN® is an opensource project under RedHat umbreDD FUHDWHG WR PDQDJH $3,p\

$3,0$1 VHSDUDWHYV IURP WKH $3,pV FRGH WKH FPHDWNWRURRQWDL
guotas, metrics and API developer portals to publish documentation.

In the following image it is described how the APl Gateway manages the APYtests, acting as
a proxy gateway.

30 https://www.apiman.io/latest/index.html

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

Policy Security

Endpoint Security

|
|
| apiman

Client
Apps

| Managed
/ API

apiman
Managed
API

\ apiman
Managed

API

Figure 9 APIMAN Gateway schema

Another strong point is the support of Ul and REST API to manage APIMANf{esing powerful
option to automate tasks to be integrated for example with a Megement module for ODIN

platform.
Security

The secure access has several options to control who, what for and whemy application or user
can access the exposed endpoints. APIMAN is fully integrated with KeyCloackhieh has already
been selected on WP3 to be the source of identity and authorization. MoreoveAPIMAN can
specify different rules for the different versions of the API published and control diéfat
configurations for each application connecting to them.

APIMAN data model is around Organizations, Plans, APIs, Client Apps and ie@s. With these
concepts, it manages everything around.

Organization

Plan

Policies

Client App

Policies

Policies

Figure 10 APIMAN data model

As illustrated in Figurel0, an API represents the endpoints exposed to the world. An Organization
is the holder or owner of an API that is published. The Client Apps use t#é”1 under some
restrictions defined in the Policies. The Policies control the rules to be apglieo an API. The Plans

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

are sets of Policies to be applied to an API for different Client Apps, so an Orgaatibn can have
an API with 2 plans and each Plan is used by different Clients because one ss& free reduced
access of the API and another Client uses a premium access with highghrottling, quotas and
permissions. The model is very powerful.

The way APIMAN handles requests to the API is controlled by API Key, so a Client App must use
a valid APl Key attached to the request to call the API. Once the PKky is verified, the API
Gateway (APIMAN) resolves all the polices against the request. When the IARsolves the work

to be performed in the call, answers to the Gateway which resolves new policies umgturns the
response to the Client App.

The types of policies to be applied can be grouped into:

X Security policies: type of authentication (Basic, Mutual TLS with certificates), whiting,
etc

x Limiting policies: rate of requests per second, number of requests during a&pod of time,
etc.

X Maodification policies: url rewriting, json transformation, etc.
x Other: cache, logging, etc.
Metrics

Once an APl is published, metrics can be obtained in the form of time tesolve requests, time
to process the API request to response time, endpoint resolving the requests, s of the
requests, throughput, bytes uploaded and downloaded per endpoint, etc.

Which is more important is that metrics can be accessed through REST API or using the Ul
management board.

Metrics are recorded in Elastic Search, so, it is a dependency during deployment.
Deployment and Setup

APIMAN can be deployed as a single gateway or can be configured to offer sral gateways
which can be very useful to manage Production and Development environmentasing DevOps
approaches.

APIMAN uses JBOSS or Wildfly to run, using JAVA 1.8. Moreover, APIMAN supports Docker s
other deployments can be used through Kubernetes for example.

The Console Manager helps creating the Organizations, Plans, Poéisiand Client applications,
making easy the set up. API are also published using the manager.

For example, after publishing and API it can be accessed using the following schema:

http://gatewayhost:port/apiman -
gateway/{organizationld}/{apild}/{version}

So, the URI, contains the address, port and the Organization and API ID, pltiee version. This
allows publishing several versions of an API, coexisting.

3.4.1.1 Usage in ODIN

APIMAN can be used as an API Gateway to publish the platform API to exterAgplication clients
RU VHUYLFHV ,WpV LQWHJUDW L Ril@ieZrhakes it. dMey@eoD ¢aNdida@® VHW XS
implement ODIN Resource Gateway.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 ‘g)dln

The plans can be used to publish different API for example to be used from extelsarvices or
internal services of the platform with a unique tool, controlling notnty version access but
monitoring and controlling quotas and throttling.

The management API is something that makes APIMAN very appealing as it leads the
implementation of dynamic resource API publishing, something that is desired in the ODIN
platform.

Finally, the Developer Portal is a plus, as eases the management of thealimentation for each
version of the API, making | available to the developers.

3.4.2 Features Implemented in the First Version
The following actions could be the first steps to be covered.

x Define the data model for the APl Gateway, haming the organizatioarfeach hospital,
defining plans and policies.

'"HILQH WKH $3,pV DQG VHUYLFHV WKDW ZLOO EH SXEOLVKHC

x Create the dynamic API publish controller, so resources can publish their APl when
registering

x

x Define the publish strategy for production and development

x Define the versioning strategy

3.5 Applicable Solutions for Transport Services

Transport service manage the task to get the data for 0T, Robots, Al and Datasmurce, and
help introducing the data into ODIN platform.

There exists lots of types of protocols and approaches. One approach is to creatn adapter
between protocols, second one is to use pre-created adapters and finally using a platform which
already has integration to those resources, such as an IoT platform. The first appadais out of
the scope due to the huge number of different protocols that potentially could biategrated into
ODIN.

3.5.1 Apache Camel Components

Apache Camef! is an open-source project which mission is to provide an integration framverk
in order to connect different systems producing and consuming data.

Apache Camel follows the enterprise Integration Patterns presented in D4.1 SHoT Resource
Management System Specification, Section 6.2 Enterprise Integration Patterns, oifeg a wide
range of components that are premade, such as adapters.

81 https://camel.apache.org/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

Camel has several core concepts over which creates its integration framework and architecture

The CamelContext is the runtime where everything is integrated and serves the point of access
to the rest of the modules.

The Routes are definitions that can be set using DSL language or programnelly, to set the
path that a message follows inside Camel. A route has 1 input and one or several outputs

Processors or message filters are the handlers of messages between oth@odules in Camel to
transform, enrich validate or perform more complex tasks with the messagesnplementing all
WKH (,3pV

Finally, the Components are the exposed endpoints to integrate external systerasd are the
most important for the WP4.

An overview of the concepts and architecture is shown in the following image.

N
Routing engine /CameIContext O\ Processors
Message filter
ADSL wires processor Handle things in
endpoints and Route 1 W between endpoints
processors Route 2 w W like:
together to form Route N J . EIPs_
routes. from(“file:c:\aDir") * Routing .
filter() == -Tran_s.fc_:nnann
.xpath(expression) ' Mez_jlatlon
.to(”jms:aQueue”); Content-based router ' Em:uchn:nent
* Validation
processor -
* Interception
ﬁ
7 7 9 =
Components
File | wwm | JMS HTTP « Provide a uniform

endpoint interface
* Connect to other systems

Figure 11 Apache Camel Core concepts and Architecture

Security
Apache Camel offers several types of security levels, where the most important is at routedév
To summarize:

X Route Security t Any interaction can be forced to be authenticated and authorized. To
support this, Apache Shiro and Spring Security can be used.

x Payload Security - Messager encryption/decryption services can offer secrecy among
endpoints of the routes, so the data remains encrypted while in the pipes. &loperations
can be on part or full message.

x Endpoint Security t In case any endpoint wants to implement its own security in terms of
authentication, authorization, or encryption, it is also possible, beyond the securityeréd
at route or message level.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

x Configuration Security t This kind of Security is used to manage sensitive information from
configuration files that can be distributed or local.

Metrics

Camel offers IMX suppor82 by default, so it can be monitored several points out of the box. This
supports offers integration with tools such as Prometheus which is one of the most pr@mig tools
WR EH XVHG LQ 2',1pV .3, DQG PRQLWRULQJ FRPSRQHQW

Network and Java Virtual Machine checks are available through pings and remote invocatios t
get data about the JVM and the applications running on it.

Common CPU, Memory and Disk metrics are basic information included with IMX support.

7KH NH\ PHWULFV DERXW &DPHO DUH DOVR HSR§HQWVXEXKWD B
behaviour, list of processors, thread pools and lots of information to check the status of Cam

Deployment and Setup

Apache Camel can be deployed in typical environments with web servekdi Tomcat or Wildfly,
using it embedded in a Java application, using containers such Spring Boot or @ OSGI
container as Apache Karaf, but all of them start with creating a CamelContext.

Each of the ways to use Camel offer pros and cons. For example, Jaapplications offers flexibility
EXW VWDUW DQG VWRS OLIHF\FOHV LV KhvtlGadedirdo heth@pLRXYV DQG

Containers and web servers handle better Camel lifecycle and offenonitoring but are more
resource consuming.

At the end what is most important is that usually running Camel in production must be started
carefully to avoid errors with the routes, so a good setup must be performed.

Beyond those traditional deployments, clustered deployments are also available support
scalability. Clusters can be handled using load balancers, active/passive or aaiactive routes,
and other means but those are very hard to manage as require a lot of configuration.

To solve this problem, Camel offers the possibility to be used with Docker and Kuhetes not
only using images but offering Apache Camel ¥ a subproject of Apache Camel, which is a
lightweight integration framework that runs natively on Kubernetes and deploys integraticode
using serverless and microservice architectures in the cloud. Users of Camel K can run code
written in Camel DSL using Kubernetes or OpenShift. It is important to mention Camel K
components are called Kamelets but are different from Camel Components.

Another important subproject is Camel Kafka Connector, which allows using alla@el
Components as extensions of Kafka, expanding new integration to Kafka Caut to the Kafka
messaging bus.

32 Camel in Action 2nd ed. ISBN 1617292931. Claus Ibsen, Jonathafnstey. Chapter 16.1

33 https://camel.apache.org/camel-k/1.8.x/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1

3.5.1.1 Usage in ODIN

Apache Camel has Component¥ for several systems that are of interest, to name a few, the
following table is attached. The list contains most important components for WP4 and ODIN.

Odin

Those components would cover the Transport Services for several integrations 10T, Data, Al
and Robots, plus transformation message tasks.

REST Expose REST services or call externg To connect to systems with REST
REST services. interface

XSLT Transforms XML payload using an XSL]| Process messages in XML format
template.

ActiveMQ Send messages to (or consume from) Integration with messaging bus
Apache ActiveMQ.

AMQP Messaging with AMQP protocol using Integration with messaging bus
Apache QPid Client.

Async HTTP| Call external HTTP services using Asyn(Integration with systems

Client or Websocket

AWS, Azure,| Integration with several AWS, Azure| Hybrid cloud platform integration

Google Google Cloud services

CoAP Send and receive messages to/fron loT device integration
COAP capable devices.

MQTT Send and receive messages to/fron] 0T & Robot device integration
MQTT brokers.

Debezium Capture changes from several databasg Data integration
types (SQL, NOSQL)

Deep Java| Infer Deep Learning models fron] Al integration

Library message exchanges data using Deef
Java Library (DJL).

Docker Manage Docker containers Management integration

Elasticsearch | Send requests to ElasticSearch via RES| Analytics and Al integration
API

34 https://camel.apache.org/components/3.15.x/index.html

Version 10

| 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

FHIR Exchange information in the healthcarg Health data integration
domain using the FHIR (Fast Healthcare
Interoperability Resources) standard.

Huawei Use Huawei Cloud Hybrin Cloud integration

IEC 60870 Client and server SCADA communicatior| loT and M2M control

Ignite Ignite operations management, Analytics
execution and control

IOTA Blockchain transaction on IOTA Distributed ledger technologies on

loT

Web3J Blockchain transaction on Ethereum DLT

JDBC Database access using JDBC Data integration

JPA Store and retrieve objects from SQL Data integration
databases

JSON Several JSON components to handlg Data transformation
JSON data

Kafka Send and receive messages to/fron] Messaging bus integration
Kafka

Kubernetes Kubernetes management Management

RabbitMQ Send and receive messages fornm Messaging bus integration
RabbitMQ

MongoDB Mongo data operations Data integration

Modbus Modbus bridge Modbus integration

Nagios Send passive checks to Nagios using Analytics and monitoring
JSendNSCA

OPC UA Industrial machine communications M2M and IoT integration

Paho MQTT communications using Eclipse 10T integration
Paho

Rest Configure REST producers based on an System integration and API

OpenAPI OpenAPI specification document| publishing
delegating to a component implementing
the RestProducerFactory interface.

SFTP SFT integration Data integration

SLACK Send and receive messages from SLACH Data integration, monitoring,

support

SQL Perform SQL queries as a JDBC Storeq Data integration

Procedures using Spring JDB

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

STOMP Send and receive messages to/from Data integration
STOMP (Simple Text Oriented
Messaging Protocol) compliant message
brokers

Table 3 Camel Components

Beyond the Components, Camel also supports around 46 data types, related the systems it
supports integration such as JSON, FIHR, HL7 and other ones such as barcodes, gzip.

With those tools, the task to integrate any resource become easier thilittle customization or
development.

In case an integration using Camel K with Kamelets is implemented, the Kamelet dague
VXSSRUWV FRQQHFWLYLW\ WR WKH PRVW LPSRUWDQW V\VWHP\
MQTT, FTP, SQL, NOSQL, FHIR, RabbitMQ and much more.

The advantage of Camel is the availability to connect to 10T, Robotics, @aand Al resources at
the end.

3.5.2 EdgeXIoT Platform

EdgeX is an opensource platform, started by Dell and donated to the Linux Foundatiwith the
mission to be a highly open, flexible and scalable software platform to intennect devices on
the IoT edge with enterprise application, with a vendor neutral mindset.

With those premises, EdgeX allows the interconnection of devices to the applicationsaboud of
a company or entity, acting as a bridge where operations and Al can be performed atetledge.

Figure 12 EdgeX Mission

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

This has several advantages as the data is distilled and processed at the edgs, actions can be
taken near real time or real time, with low latency and valuable infortian can go up to the
applications with less effort in terms of data transferred, saving time and costs.

The architecture of EdgeX is based on several layers and concepts:

Device Services: to connect to the devices at the edge. This layer supports proptary and
standard protocols such as REST, OPC-UA, MODBUS, MQTT, SNMP, BACNET, ZigBee, BLE
and many more that can be developed. This layer offers the Device Service compant that acts

as a representation of the device in the platform, so it handles communicatipsetup and
transforming data before transferring to the upper layers. In addition, offeidevice discovery
capabilities. This layers also offers an SDK to integrate any device using C or Go Lang.

Core Services: is the base of the platform to perform data storing and trafesmations,
communicate the upper-level services with the devices and hold the setumd meta data of the
devices.

Supporting Services: here starts the layer providing operations and intgkince to the platform.
Basic services are logging and alerts or notifications. Beyond thosedge analytics is provided,
and task schedulers are available.

Exporting and Application services: this layer provides connectors and data transfoation to

integrate external systems, such as AWS, enterprise applications, Azure, Ggle Cloud, and other
systems. It can define pipelines of data flows to process data form th@ore services. An SDK is
available so in case a system has no integration, so data can be retrievdrom the messaging
bus and filtered and transformed.

Security: This layer offers several services, such as Secret store, API gatewaith authentication
and authorization, control and manage secure access of users, services and devicesecure
communication at core services.

Management: The platform offers management services to configure itself, amah agent to be
integrated with externa applications or systems that want to control ¢hplatform. Currently this
layer is optional as EdgeX supports management through Kubernetes to perform start/stand
other tasks.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

Figure 13 EdgeX Architecture

Security

This is a topic that EdgeX handles very well as not only secures the accessthe platform from
the applications and user level, but it also manages the access form the devigmint of view,
which means that in case a rogue device is connected, EdgeX can minip@ the risks
disconnecting it.

The security layer provides lots of services that bring trust to any part ofdgeX. Every
communication is secured with HTTPS by default and Json Web Tokens are used as the base to
give access to the platform.

Regarding authorization, Authorization Control Lists are available for fine grained nagement of
services and devices.

Metrics

EdgeX does not shine because of its metrics section. From its Mageament Ul it can be checked
CPU, RAM, network traffic and other system metrics from a concrete EdgeX instancEhis topic
must be enhanced to provide better understanding of the cluster. On the o¢h hand, device
management offers a nice understanding of the device status.

Deployment and Setup

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

EdgeX offers Docket*** images for all of its components and Docker Composer files, but it is
possible also to deploy it through Kuberneteé$. This eases the tasks to start with EdgeX.

The setup can be performed using the Management layer agents, but the documentation points
that those modules are going deprecated in the following months in favour of the tools praed
by Kubernetes. Anyway, the management modules allow handling new devices, configurations,

and large range of options.

3.5.3 Transport solution comparison

In the following table, a light comparison among the solutions is performed tesduss which one
is better for implementing the messaging bus.

Requirements fit

Camel can be used to connect lots of resources bu
lacks some functionalities that are present in an 10]
platform as EdgeX. It gives more freedom of choic
on how to develop the needed components. Edge)
is an loT oriented platform, but to integrate devicej
modifications on the devices must be performed
EdgeX also fits very well as 10T integrator and coul
also work for robots but will not fit for some types o
resources.

Ease of adoption

10

Camel is very easy to use, while EdgeX is harder {
understand and less open.

Scalability

10

Camel can be used in clusters with configuration
EdgeX is prepared to work as Docker services tha
work together using Docker Compose or Kuberneteg

Relability

Camel depends on the component and the
implementation adopted. EdgeX is more atomic i
terms of reliability

Security
(kerberos, oauth,
etc)

10

Some Camel components allow to implemen
security using interceptors when used alone but i
harder to keep security at device level. That security
is built on top of the security provided by Came

3 https://docs.edgexfoundry.org/2.2/getting-started/Ch-GettingStaedDockerUsers/

36 https://docs.edgexfoundry.org/2.2/getting-started/Ch-GettingStaedUsersNexus/

57 https://www.lfedge.org/2020/06/25/edgex-foundry-kubernetes-instédtion/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1

Odin

context. EdgeX has security very well covered &
device level also.

Data integration 10 10 Both are integration frameworks

Support 10 6 Camel has lots of resources. EdgeX has les
resources®

Deployment 9 10 Both allow quite complete options to deploy ang

facilities setup them.

Size of project to | 8 9 Apache Camel may depend its suitableness on thg

be used implementation adopted, but it has to take intg
account that the module for translation is something
small to mid-size, as it is going to work on eack
hospital. EdgeX is expected to work as 1 deploymern
per location, so it also has a nice fit on the siz{
required.

Cost 10 9 Both opensource, but EdgeX may have more cost il
terms of adoption

Number of | - - No concrete data found. Camel is used by big

projects using it companies, hospitals and other entities to perforn
integration, while an example of EdgeX users is De
Accenture, Intel, Wipa®

Number 7 2 Camel supports more languages but does not meat

languages they serve to do everything. Main language is Java
EdgeX support C and Go Lang.

Monitoring 10 7 As stated EdgeX has fewer monitoring tools.

Hard Not known

dependencies on

other projects or

solutions

Innovation impact | 6 8 EdgeX is newer and it has a promising future in th
loT domain.

Al capabilities 0 8 EdgeX includes rules and small Al decision tools

Storage 0 0 Both can forward data to where it needs to be storeq

38 https://medium.com/nerd-for-tech/using-edgexas-an-iot-middleware-6074288ca6dd

3 https://www.edgexfoundry.org/why_edgex/why-edgex/

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1

Odin

multi-tenant 5 4 EdgeX is supposed to have an instance per locatior
Camel must adopt communication using JMS o
other channels to interconnect
CamelContext.

Red time 8 8 Both expose cases to use them in R,

pub/sub 10 10 Both support pub/sub messaging.

multiprotocol 5 0 For Camel it depends on the upper layers.

support

Other solutions that could be used could be Eclipse Kura and OpenRemote, but bothezaligned
with EdgeX platform approach and need to modify the firmware of devices ot &ast the

gateways.

3.5.4 Features Implemented in the First Version

For the first version of the Transport Protocol Services the decisions to be pemfieed are:

x Select the right implementation strategy (platform vs components)

x Define the initial protocols to be supported

x Define the message format to be used as entry point to the platform
x Define the topics and the topic strategy to be used at resource level

x Define the input/output flows that resources need to fill the use cases

40 https://dzone.com/articles/real-time-data-batching-with-apache-camel

Version 10

2022-05-20

ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

4 Measurement Collection Software Components
4.1 Requirements Review

Gathering metrics, monitoring components, and configuring alerts is a fundamentplece for
setting up and overseeinga service-based system. Having the option to determine what's going
on inside a framework, what assets need consideration, and what is causirg stoppage or
blackout is necessary. While planning and monitoring can be a challenge, includingriorh the
beginning into the service infrastructure is an important added value that assists theatas with
focusing on their work, delegating the obligation of oversight to an autated system. Coming
from the requirements we have identified 3 main use cases related to the maasment collection
software:

1. Monitoring system performance.
2. Monitoring activities and tracking of services.

3. Monitoring of RUC performance and KPIs.

4.2 Architecture Review

Every architecture for measurement collection can be summarized with the triad:
X Metrics
X Monitoring
x Alerting

Metrics represent the raw measurements of resource usage or behaviourWKH gEXV\QHVVr RI
component) that can be observed and collected throughout a system. Thesmight be low-level

usage of resources provided by the operating system, or they can be highésvel types of data

related to the specific functionality of a service, like requests served per secd from a service

endpoint. One special type of metric is system logs, which even though they usyalire text

messages with some metadata (like a time stamp), are fundamental for auditingy problem, and

can potentially be post-processed as other sources for system performance metrics.

While metrics represent the data within a system, monitoring is the process of taadting,
DJJUHIJDWLQJ DQG DQDO\WLQJ WKRVH YDOXHV WR LPSURYH
characteristics and behaviour. The monitoring system is responsible for storage, aggation,
visualization, and initiating automated responses when the data values meet specific
requirements. In general, the difference between metrics and monitoring is equal teetdifference

between data and information. Data is composed of raw, unprocessed facts, whilgormation is

produced by analysing and organizing data to build contexts with added value. Mamiing takes

metrics data, aggregates it, and presents it to humans to extract insights frothe collection of

individual pieces.

Alerting is the component of a monitoring system that performs actions based arhanges in
metric values. Alerts definitions are composed of metrics-based conditions, and aati® to be
performed when the values of the metrics don't match the acceptable conditions. While
monitoring systems are incredibly useful for active interpretation and investigationne of the
primary benefits of an alerting system is letting administrators disengage from the syist. Alerts
allow defining situations that make sense of automated and active managent of the system
while relying on the passive monitoring of the software to watch for changing condiim

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

The ODIN platform could offer an interesting service for deployers, that is the capatyilto
automatically sharing monitoring and alerts when soliciting support. The platform couittiude a
component to manage support provided by ODIN platform owners (T3.4 within the projecthis
component would allow system administrators to communicate directly with supg providers
and attach, annotate, or reference, monitoring information and alerts for quickeesolution of
issues. Another option for the platform, like many commercially available systems,to share
anonymous performance metrics with the platform owner in order to improve the system overall

4.3 Applicable Technology
4.3.1 Prometheus

Prometheus' is open-source computer monitoring and alerting software. It recordsetrics in real
time in a time series database (with high capture capacity) based on the content the entry point
exposed using the HTTP protocol. These metrics can then be queried using avgile query
language (see PromQL below) and can also be used to generatderts. The project is written in
Go* and is available under the Apache 2 license. The source code is available on GitHaibd is
a project managed by the Cloud Native Computing Foundatidhalong with other projects such
as Kubernetes and Envoy.

Prometheus has been developed at SoundCloud since 2012, when the company rea&lizthat its
monitoring solutions (StatsD and Graphite) weren't right for their needs. Prometheusasv
therefore designed to address these problems: having a multidimensional datde, an easyto-
use tool, a simple and scalable collection mechanism, and a powerful quelanguage, all in one
tool. The source code of the project was released under a free license from the very beginning.

In May 2016, Prometheus was the second project incubated within the Cloud Native Computing
Foundation after Kubernetes. The tool is in use by many companies, including Digi@tean,
Ericsson, CoreOS, Weaveworks, Red Hat and Google. Version 2 was released November
2017. In August 2018, the Cloud Native Computing Foundation announced that Prometheus
could be used in production.

A typical Prometheus installation includes several building blocks:

x Several agents (exporters) that usually run on the systems to be monitored andl expose
the monitoring metrics.

Prometheus for centralization and archiving of metrics.

Alertmanager that triggers the issuance of alerts based on rules.

Grafana® for the return of metrics in the form of a dashboard.

PromQL is the query language used to build dashboards and create alerts.

X X X X

41 Prometheus, https://prometheus.io/, Last Access Jan. 2022

42 Go Language,https://go.dev, Last access Jan. 2022
43 Cloud Native Computing Foundationhttps://www.cncf.io, Last Access Jan. 2022

4 Alertmanager, https:/prometheus.io/docs/alerting/latest/alertmanager/ Last Access Jan. 2022

4 Grafana, https://prometheus.io/docs/visualization/grafana/ Last Access Jan. 2022

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

Prometheus data is stored in the form of metrics. Each metric has a nanaad a series of labels
in the form of a key value pair. Each metric can be selected basedhdhese labels. These labels
include information about the source of the metric (agent, server address) as well asvariety of
application-specific information (HTTP code, request method), endpoints, etd’he ability to
specify an arbitrary list of labels and query them in real time explains why theometheus data
model is called multidimensional.

Prometheus stores data locally on disk. This technique optimizes quick archiving anetrieval.
Prometheus can also store metrics on remote servers (especially for long-term archigjn

Prometheus collects data in the form of a time series. Time serieseaactively retrieved - the
Prometheus server queries a list of data sources (the exporters) with a spécipolling frequency.
These collection points serve as data sources for Prometheus. The server alsas mechanisms
to automatically detect the resources to monitor.

Prometheus has its own query language PromQL (Prometheus Query Languaéfe)lhis language
allows users to select and aggregate the metrics stored in the dabase. It is particularly suited to
operations with a time series database by providing numerous specific features fmanipulating
time (time offset, average, maximum, etc.). Prometheus supports four types wifetrics:

X Indicator (absolute temperature, amount of disk space consumed)

x Counter (number of requests since the start of a program)

X Histogram (sampling a number of requests in multiple containers to calculate quantiles)
X Summary (relatively similar to the notion of histogram with additional notions).

The configuration of alerts is configured by Prometheus using a condition bagen an expression
in PromQL format and a time duration that allows you to characterize the time recgd to trigger
an alert. When alerts are triggered, they are passed on to the étmanager. The latter is
responsible for carrying out a certain number of aggregation, deactivation and timait operations
of these alerts before transmitting them by different means (email, Slack nat#tion or SMS).

Prometheus is not designed to provide dashboard feedback although it does have akaround
for doing so. It is a good idea to use a tool like Grafana eventffis solution has the drawback of
making the installation of the monitoring system more complex.

Prometheus uses so-called white box surveillance. Applications are enc@ged to expose their
internal metrics (using an exporter) so that Prometheus can collect thennaa regular basis. In
case the application (or component) cannot do it directly (database, monitorirgerver), there are
many exporters or agents ready to use to fulfil this role. Some exporters alatiow you to manage
communication with some monitoring tools (Graphite, StatsD, etc.jo simplify switching to
Prometheus during migration.

Prometheus focuses on platform availability and core operations. Metrics are typlty archived
for a few weeks. For long-term storage, it is recommended to turn to more suitable storage
solutions. Prometheus' exporter metrics display format has been standardized with the nam
OpenMetrics'” so that it can be reused elsewhere. Some products have adopted this format,
such as InfluxDB, Google Cloud Platform, and DataDog.

46 PromQL, https://prometheus.io/docs/prometheus/latest/querying/basics/ Last Access Jan. 2022

47 OpenMetrics, https://openmetrics.io, Last Access Jan. 2022

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

4.3.1.1 Usage in ODIN

BURPHWKHXV LQ 2',1 FDQ EH XVHG IRU qORQLWRULQJ VRIMWHP SHI
58& SHUIRUPDQFH DQG .3,Vr DV ZHOO DV WKH EDVLV IRU WKH RE¢
with technical support, and Anonymous performance sharing.

One of the advantages of using this software is that the technologies prosed for other
components, presented in this deliverable and deliverable D4.5, are already gaied with
Prometheus.

4.3.1.2 Available Open-Source Projects

The open-source project of Prometheus monitoring system and time series database is dsahle
on Githubf®.

4.3.2 ELKStack

Elasticsearch® is a distributed, open-source search and analysis engine for all typesf data,
including textual, numeric, geospatial, structured, and unstructured. It is based on Aphe
Lucene® and was first released in 2010 by Elasticsearch N.V. (now known as Elasti§nown for
its simple REST APIs, distributed nature, speed, and scalability, Elasticsearch is there
component of Elastic Stack, an open-source toolset for capturing, enrictgnarchiving, analysing
and data visualization. Commonly referred to as the ELK Stack (after Elasgesch, Logstash and
Kibana), Elastic Stack now includes a rich collection of supplements known as Beafor
submitting data to Elasticsearch.

In recent years the world of Elasticsearch has expanded considerably. Born as a NoSQL databa
to support text search through the Apache Lucene index, the project saw thdevelopment of
other open-source products: LogStasht, Kibana? and Beats®.

Logstash is a log aggregator that collects data from various input source@pps, databases,
servers, etc.), performs various transformations and data clean up, and finalgnds the resulting
data to various supported output destinations including Elasticsearch. Kibana, on t¢her hand,
is a visualization tool that works on top of Elasticsearch, giving usersettability to analyse and
visualize data. Finally, Beats are software packages (agents) that arstalled on hosts to collect
different types of data to forward on the stack.

48 Prometheus GitHub project https:/github.com/prometheus/prometheus, Last Access Feb. 2022

4 ElasticSearch,https://www.elastic.co/, Last Access Jan. 2022

50 Apache Lucene, https://lucene.apache.org, Last Access Jan. 2022

51 LogStash, https://www.elastic.co/logstash/, Last Access Jan. 2022

52 Kibana, https://www.elastic.co/kibana/, Last Access Jan. 2022

53 Beats, https://www.elastic.co/beats/ , Last Access Jan. 2022

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 g)dln

All of these components are most commonly used together for monitoring, wbleshooting and
security of IT environments (although there are many other use cases for ELKa&k such as
business intelligence and web analytics). Beats and Logstash take care of datollection and
processing, Elasticsearch indexes and stores the data and Kibana provides a useterface to
guery and view the data.

As previously mentioned, ELK stack represents an open-source solution for theanagement and
analysis of large amounts of data including logs. Monitoring modern applications and th€
infrastructures on which they are deployed requires a log management and analysis sidn that
will overcome the challenge of monitoring highly distributed, dynamic antbisy environments.
ELK Stack allows you to perform these operations by providing users with a pesul platform that
collects and processes data from multiple data sources and stores them in a cealized data
archive. In addition, it can scale with data growth as well as providing a sef tools for data
analysis.

In order to ensure high availability, high reliability and security of applicatiorsl.K Stack rely on
the different types of data generated by the applications themselvesd by the infrastructure that
hosts them. In this way, solutions can be studied to improve the software, thechitecture and /
or promptly intervene in the event of a Deny Of Service (DOS).

Logs have always existed and so have the different tools available to analyse meWhat has
changed, however, is the underlying architecture of the environments that generateetbe logs.
The architecture has evolved into microservices, containers (for exampleddker, Kuberneteg
and orchestration infrastructures distributed on the cloud or in hybrid environments. Furthermore,
the volume of data generated by these environments is constantly growing whiis a challenge
in itself. Centralized log management and analysis solutions such as ELK Stack, allovhave an
overview of the information captured and, consequently, ensure that the apps are edlie and
performing at all times.

ELK Stack log management and analytics solutions include the following key capabilities:

X Aggregation: the ability to collect and send logs from multiple data sources

x Processing: the ability to transform log messages into meaningful data for eassanalysis

X Storage: the ability to store data for extended periods of time to allof@er monitoring, trend
analysis and security use cases

X Analysis: the ability to dissect data by querying it and creating views and dashboards on it.

The various components of ELK Stack have been designed to interact with each otheithout
too many configurations. However, the way you design the stack can differ greatly depending on
your environment and use case. Elasticsearch, of course, is not only used faglanalysis. Its
architecture can also be used for the analysis of other types of data, such as those derivingrfr
the Internet Of Things (IOT) or from e-commerce transactions.

In fact, thanks to LogStash it is possible to define custom transformers fonw type of data.
Apache Lucene's text indexing capabilities allow you to create unstructenl data search engines.
Finally, with the different visualization tools offered by Kibana you can create dashboarids
different analysis purposes. The management of accesses, user roles and workspacensure
the creation of environments oriented to the needs of the various professional figs of a
company who must analyse the data.

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 ‘g)dln

4.3.2.1 Usage in ODIN

(/.6WDFN LQ 2',12 FDQ EH XVHG IRU gORQLWRULQJIDDWWHYIONDHYV |
gORQLWRULQJ RI 58& SHUIRUPDQFH DQGW.BRQIDOWHHWDIOFBYV BDW WI
sharing with technical support.

4.3.2.2 Available Open-Source Projects

Elastic, however, recently changed its licensing scheme for Elasticsearcma Kibana, moving

away from the open-source Apache 2.0 license to the more restrictive Serv&ide Public License

(SSPL) and Elastic License. The Open-Source Initiative has publicly stated that the SSBInot

an open-source licence. For a true open-source alternative to the l&stic distribution,

organizations will need to choose the Open Distro for ElasticsearthLQVWHDG RI RQH RI (OC
offerings. The Open Distro for Elasticsearch will be renamed as the communityanaging the

project manages its own fork for the Elasticsearch and Kibana codebases.

4.4 Features Implemented in the First Version

,Q WKH ILUVW YHUVLRQ ZH H[SHFW WRVFRWHPB SHKWH XKWPIDEIFHH RL\
of the before mentioned technologies.

54 Open Distro for Elastic Searchhttps://opendistro.github.io/for-elasticsearch/Last access Feb. 2022

Version 10 | 2022-05-20 | ODIN ©

Deliverable D4.2 t Implementation of Local CPS-loT RSM Features v1 \&\S)dln

5 Conclusions an Next Steps

For the following period, the three main components described in this deliadile will undergo a
deeper study and research so that decisions regarding the technologies to use as Was the final
open-source projects to be implemented, are made and the initial tests can be cardeut.

These decisions involve not just technological partners but also other stakdders in the project,
not just the pilots, but also business leaders and the open innovation.

The decisions include:
x Technology or technologies to be used for the Resource Descriptor.

x Technology to be used as the Message Bus.

x

Technology to be used for Transport Services.

Technology to be used for Monitoring System Performance.

x

All this will be reported in deliverabl®4.3 - Implementation of Local CPS-loT RSM Features v2

Version 10 | 2022-05-20 | ODIN ©

