

Deliverable No. D4.2 Due Date 28/02/2022

Description
D4.2 describes the Resource Descriptors, the Resource Gateway,
and the measurement collection software components.

Type Report
Dissemination
Level

PU

Work Package No. WP4
Work Package
Title

CPS-IoT Resource Management
System

Version 1.0 Status Final

D4.2 Implementation of Local CPS-IoT RSM
Features

�7�K�L�V���S�U�R�M�H�F�W���K�D�V���U�H�F�H�L�Y�H�G���I�X�Q�G�L�Q�J���I�U�R�P���W�K�H���(�X�U�R�S�H�D�Q���8�Q�L�R�Q�p�V���+�R�U�L�]�R�Q�������������U�H�V�H�D�U�F�K��
and innovation programme under grant agreement Nº 101017331

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 2

Authors

Name and surname Partner name e-mail

Luis Carrascal INETUM luis.carrascal@inetum.com

Juan Gonzalez INETUM juan.gonzalez@inetum.com

Pablo Lombillo MYS plombill@mysphera.com

Alejandro Medrano UPM amedrano@lst.tfo.upm.es

Eugenio Gaeta UPM eugenio.gaeta@lst.tfo.upm.es

History

Key data

Keywords IoT, resources, robot, gateway, integration, platform, layer, API,
�P�H�V�V�D�J�L�Q�J�����Z�H�E���V�H�U�Y�L�F�H�����D�U�F�K�L�W�H�F�W�X�U�H�����F�R�P�S�R�Q�H�Q�W�V�����f��

Lead Editor Luis Carrascal (INETUM)

Internal Reviewer(s) Francesca Manni (PEN) and Marcello Chiurazzi (SSSA)

Date Version Change

05/10/2021 0.1 Initial TOC

25/02/2022 0.2 Draft content

21/03/2022 0.3 Consolidation of input from partners

23/03/2022 0.4 Final adjustments

25/03/2022 0.5 Final pre-review

20/05/2022 1.0 Deliverable ready for submission

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 3

Abstract
�'�H�O�L�Y�H�U�D�E�O�H���'���������q�,�P�S�O�H�P�H�Q�W�D�W�L�R�Q���R�I���/�R�F�D�O���&�3�6-IoT RSM Features v1�r��describes the fundamental
features of the CPS-IoT Resource Management System, the ODIN platform layer that supports
the interconnection of available resources. The Resource Descriptor is the key component that
defines and manages the data collection infrastructure. The Resource Gateway manages
communication to the ODIN upper layers. The Measurement Collection Software Components
are used to register and collect performance indicators.

Statement of originality
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation, or both.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 4

Table of contents
TABLE OF CONTENTS .. 4

LIST OF TABLES ... 5

LIST OF FIGURES .. 6

1 INTRODUCTION .. 7

1.1 DELIVERABLE CONTEXT .. 7

1.2 PLATFORM ARCHITECTURE OVERVIEW .. 8

2 RESOURCE DESCRIPTOR ... 10

2.1 REQUIREMENTS REVIEW .. 10

2.2 APPLICABLE TECHNOLOGY ... 10

2.2.1 Web of Things ... 10

2.2.2 OpenAPI ... 15

2.2.3 Comparison between Web of Things and OpenAPI .. 19

2.2.4 FHIR ... 20

3 RESOURCE GATEWAY .. 23

3.1 REQUIREMENTS REVIEW .. 23

3.2 ARCHITECTURE REVIEW .. 23

3.3 APPLICABLE SOLUTIONS FOR MESSAGING BUS .. 23

3.3.1 Kafka .. 23

3.3.2 RabbitMQ ... 26

3.3.3 Bus Solution Comparison .. 28

3.3.4 Features Implemented in the First Version .. 30

3.4 APPLICABLE SOLUTIONS FOR THE GATEWAY .. 30

3.4.1 APIMAN ... 30

3.4.2 Features Implemented in the First Version .. 33

3.5 APPLICABLE SOLUTIONS FOR TRANSPORT SERVICES .. 33

3.5.1 Apache Camel Components ... 33

3.5.2 EdgeX IoT Platform ... 38

3.5.3 Transport solution comparison .. 41

3.5.4 Features Implemented in the First Version .. 43

4 MEASUREMENT COLLECTION SOFTWARE COMPONENTS ... 44

4.1 REQUIREMENTS REVIEW .. 44

4.2 ARCHITECTURE REVIEW .. 44

4.3 APPLICABLE TECHNOLOGY ... 45

4.3.1 Prometheus .. 45

4.3.2 ELKStack.. 47

4.4 FEATURES IMPLEMENTED IN THE FIRST VERSION ... 49

5 CONCLUSIONS AND NEXT STEPS ... 50

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 5

List of tables
TABLE 1 WOT VS OPENAPI COMPARISON ... 19

TABLE 2 FHIR VS HL7V2 COMPARISON ... 20

TABLE 3 CAMEL COMPONENTS .. 38

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 6

List of figures
FIGURE 1 ODIN PLATFORM ARCHITECTURE ... 9

FIGURE 2 WEB OF THINGS DESCRIPTION .. 12

FIGURE 3 WOT THING DESCRIPTOR EXAMPLE .. 14

FIGURE 4 OPENAPI DESCRIPTION ... 16

FIGURE 5 OPENAPI THING DESCRIPTOR EXAMPLE 1 .. 17

FIGURE 6 OPENAPI THING DESCRIPTOR EXAMPLE 2 .. 18

FIGURE 7 KAFKA ARCHITECTURE WITH PARTITIONS .. 25

FIGURE 8 RABBITMQ COMPONENTS .. 27

FIGURE 9 APIMAN GATEWAY SCHEMA .. 31

FIGURE 10 APIMAN DATA MODEL .. 31

FIGURE 11 APACHE CAMEL CORE CONCEPTS AND ARCHITECTURE .. 34

FIGURE 12 EDGEX MISSION ... 38

FIGURE 13 EDGEX ARCHITECTURE .. 40

file:///C:/Users/Luis/Documents/ODIN/WP4/ODIN_D4.2_Implementation_of_Local_CPS-IoT_RSM_Features-AM_AG_FM_PL_MY.docx%23_Toc103896808

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 7

1 Introduction
This deliverable describes the fundamental features of the CPS-IoT Resource Management
System, the ODIN Platform layer that supports the interconnection of available resources. The
Resource Descriptor is the key component that defines and manages the data collection
infrastructure. The Resource Gateway manages communication to the ODIN upper layers. The
Measurement Collection Software Components are used to register and collect performance
indicators. All these components along �Z�L�W�K���W�K�R�V�H���G�H�V�F�U�L�E�H�G���L�Q���G�H�O�L�Y�H�U�D�E�O�H���'���������q�,�P�S�O�H�P�H�Q�W�D�W�L�R�Q��
of Advanced CPS-�,�R�7�� �5�6�0�� �)�H�D�W�X�U�H�V�� �Y���r���� �P�D�N�H�� �X�S�� �W�K�H�� �F�R�U�H�� �2�'�,�1�� �F�R�P�S�R�Q�H�Q�W�V�� �I�R�U�� �U�H�V�R�X�U�F�H��
management and interaction.

1.1 Deliverable context
The following table sets the context of this deliverable:

PROJECT ITEM RELATIONSHIP

Objectives

�7�K�H�� �G�H�O�L�Y�H�U�D�E�O�H�� �L�V�� �U�H�O�H�Y�D�Q�W�� �W�R�� �2�'�,�1�p�V�� �2�E�M�H�F�W�L�Y�H�� ������ �D�V�� �L�W�� �G�H�V�F�U�L�E�H�V�� �D�Q�G��
defines the software architecture of the ODIN platform to cover medical
and technological requirements.

The WP4 objectives are:

�x Specification of the CPS-IoT RMS requirements based on input
from WP2

�x Specification of KPI and metrics collection framework

Exploitable results
There is no specific contribution to any exploitable results. Instead, the
work presented will be the guide to create the software architecture of
solution components.

Workplan

D4.2 is attributed to WP4 tasks, WP4 - CPS-IoT Resource Management
System [Months: 3-42] MYS, CERTH, UPM, INETUM. Task T4.2 CPS-IoT
Resource descriptor module (INETUM) [M3-M36], is the main
responsible of this deliverable.

Milestones
D4.2 is a key deliverable for milestones PREPARATION (MS1),
PROCUREMENT PROCEDURE SIMULATION (MS2), and
IMPLEMENTATION (MS3) phases of the project.

 D3.2

Report on the Data
model, ODIN semantic
ontology, datasets
harmonization plan.

Deliverables

D4.1
CPS-IoT Resource
Management System
Specification

D4.2 to D4.4
Implementation of Local
CPS-IoT RSM Features
v1 to v3

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 8

D4.5 to D4-7 Implementation of
Advanced CPS-IoT
RSM Features v1 to v3

4.5Implementation of
Advanced CPS-IoT
RSM Features v1

D7.2 �t D7.7
KPI Evolution Report (I
to IX)

Regarding the
collection of KPIs
about DevOps
activities.

D7.9
Pilot Studies Evaluation
Results and
sustainability

Regarding component
evaluation results of
unit/integration
testing.

Risks

The guidelines provided in this deliverable can help in minimizing the
following risks identified in the Grant Agreement:

�x Technologies not available in time
�x Technical problems during component/module development
�x Complexity of unification procedure

1.2 Platform Architecture Overview
The following diagram shows an overview of the ODIN Platform architecture where the
components described in this deliverable are marked:

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 9

Figure 1 ODIN Platform Architecture

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 10

2 Resource Descriptor
2.1 Requirements Review
The different resource types that will be managed by the ODIN Platform are varied and
heterogeneous. Therefore, the Resource Descriptor provides the abstraction layer that is
necessary for a homogeneous description of data. It will specify the data structures to support
multi-domain exchange of information, and provides common interfaces and will be aligned with
the semantic models defined in WP3.

The information that the Resource Descriptor manages can be, but not limited to:

�x Semantic Resource Description

�x Resource Services

�x Resource Federation

�x Resource Privacy, Security, and Trust

�x Resource Metric Reporting

�x Resource Health

�x Resource UIs

�x Resource Administration

�x Resource Documentation

�x Resource Deployment

�x Resource Communication

2.2 Applicable Technology
Three different technologies have been analysed to implement the Resource Descriptor. They will
be described in detail in the following sections. In order to decide what technology will be used
several possibilities will be explored, like using one of them or even a combination of them. The
result of this decision will be described in the following version of this deliverable.

2.2.1 Web of Things
IoT technology today has one main downside, which is that devices do not speak a common
language. In fact, there are hundreds of protocols and standards that, in most cases, are not
compatible with each other. Therefore, the first objective of WoT is to create a "lingua franca"
common to all devices. 1

1 https://webofthings.org/2017/04/08/what-is-the-web-of-things/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 11

Web of Things (WoT) is a W3C initiative to overcome interoperability barriers between IoT devices.
This initiative proposes that "things" use web standards to communicate with each other and share
information. In this way the web would not only consit of digital elements but would also of physical
objects in the form of virtual representations.

This common language starts to be built by standardizing the description of devices in a way that
is understandable by machines. This allows both humans and computers or other devices to
discover IoT things, access their information and interact with them. This description of a
particular thing is called the thing descriptor and it has been decided by convention that it should
be written in JSON format as it allows for the addition of contexts that make it highly specific while
maintaining machine compatibility. It consists of a set of interactions based on a small vocabulary
that makes possible both the integration of various devices and the interoperability of various
applications.

Thing Descriptor(TD) is the most important block in the WoT architecture as it establishes a
standard that describes each object and the way it is used. This information has to be
understandable by a machine since communication between objects is prioritized and that is why
the JSON/JSON-LD format has been chosen for the description of objects, since it allows adding
contexts that make it highly specific while maintaining compatibility with machines. "A TD is
instance-specific (i.e., describes an individual Thing, not types of Things) and is the default
external, textual (Web) representation of a Thing." 2

Apart from the Thing descriptor WoT is composed of several interrelated blocks, these are:

�x Protocol Binding: It is a continuation of the Thing Description that provides information on
how to establish an interface for each network-facing object for different protocols. This
allows not only HTTP to be used, but, WoT proposes connectivity from the structural base
with all web protocols such as CoAP, MQTT or WebSocket.

�x Scripting API: It is an optional block that provides a standard for the creation of object
control apps. It consists of a WoT Interface that allows scripts to perform the main
operations on a Thing, such as exposing or consuming it, add or read properties, or
retrieve its Thing Descriptor. It uses JavaScript, resembling Web browser APIs.

�x Security and Privacy Guidelines: Informative document that establishes guidelines for
secure implementation and configuration of IoT objects. W3C working group has identified
a wide list of authorization schemes that could be added to the Thing Descriptor.
Examples of supported schemes include use of API key, OAuth2.0, or Bearer tokens.

All the blocks above are implemented within a software runtime named Servient, which can act
indifferently as a Server or as a Client. In the first case, the Servient is said to host and expose
Things, i.e., it takes the Thing Descriptor as input and creates a dynamic object to serve the
requests for accessing the exposed properties, actions, and events. In the second case, the

2 https://www.w3.org/TR/wot-architecture/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 12

Servient is said to consume Things, i.e., it creates a runtime resource model that allows accessing
the properties, actions, and events exposed by the server Thing on a remote device.3

Figure 2 Web of Things Description4

The thing descriptor has 4 components:

�x Textual metadata of the thing

�x Interaction Affordances indicating how the thing is used, how the consumer can interact
with the thing

�x Schemas with notation for machine-understandability

�x Web links that express relationship with other things or pages.

There are three types of Interaction Affordance: Properties, Actions, and Events.

3 https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01

4 OpenAPI Thing Descriptions for the Web of Things �t Tzavaras et al.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 13

�x Properties expose the state of a thing. This state can be retrieved (read) and optionally
updated (write).

�x Actions allow invoking a function of the thing to cause a change of state.

�x Events imply the asynchronous sending of information from the thing to the consumer. No
state is sent but state transitions.

In the ODIN project this Thing Descriptor could be used to grant accessibility to all the resources
in each hospital regardless of the communication protocol they implement (e.g., HTTP, Bluetooth,
MQTT, ZigBee, WebSocket). This metadata accessibility would allow things metadata to be
exposed in the platform so that other Things or clients (i.e., services or users) can interact with
them and manage its functionality.5

One of the main paradigms of WoT applications is the use of well-established Web architectural
principles and protocols to seamlessly interconnect intelligent objects. These include
Representational State Transfer (REST), defined by Fielding and Taylor, as the main architectural
interaction pattern, and Hypertext Transfer Protocol (HTTP) as the application layer protocol. In
WoT RESTful applications, a smart object (typically running an embedded Web server) typically
interacts with Web counterparts by exchanging requests and responses over HTTP. Although it
is a standard and well-known application layer protocol, it can be too cumbersome and inefficient
for implementation on limited, battery-powered devices. One way to implement WoT in these
objects is through a HomeHub, built for example with a Raspberry Pi. This would communicate
with the rest of the legacy objects and show them to the web providing them with a Thing
Description and connectivity using the necessary protocols.67

5 Automatic generation of Web of Things servients using Thing Descriptions �t Iglesias-Urkia et al.

6 The Web of things: Challenges and Opportunities �t Dave Raggett 2015

7 Towards a Web of Things-based system for a smart hospital �t Mezenner et al. 2020

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 14

Figure 3 WoT Thing Descriptor Example8

Figure 3 shows an example of a Thing Descriptor for a smart door that contains:

a) A context attribute which extends the definition with additional vocabulary terms. (Line 2)

b) The identifier of the device (Line 3)

c) An indicative title (Line 4)

d) The security configuration of the service (Basic Authentication in this example). (Line 5-
8)

8 OpenAPI Thing Descriptions for the Web of Things �t Tzavaras et al.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 15

e) Interactions supported by the smart door; the state property, the lock and unlock actions,
the door open event (i.e., the state property of the door turning to open).

f) The forms field that describes how each interaction can be performed; it specifies the
protocol that should be used (i.e., HTTPS) and the operation endpoint.

The endpoint for getting the last smart door status value is specified in the Properties object,
which is in the Forms array. The protocols and endpoints used to perform lock and unlock actions
are specified by the Actions object. The protocol, endpoint, and subprotocol for subscribing to
smart door open events are specified by the Events object.

2.2.2 OpenAPI
OpenAPI specification, formerly known as Swagger, is a standardized format for describing
Application Programming Interfaces (APIs), resources or services understandable by humans and
machines. This description contains information about different aspects of the service such as
resources, endpoints, operations, parameters, and authentication and allows anyone referencing
the API to understand the service.9

With OpenAPI, an API can be described in a uniform way. This is known as an "API definition" and
is generated in a machine-readable format. In particular, two languages are used: YAML and
JSON and a large set of properties are available for composing service descriptions. Technically,
YAML and JSON differ only slightly, so it is possible to automatically convert an existing API
definition from one language to another. However, YAML has a clearer structure and is easier for
people to read. The differences are that, Basically, JSON does not support comments. On the
other hand, YAML requires hyphens before array items and relies heavily on indentation, which
can be cumbersome on large files (indentation is entirely optional in JSON).10

OpenAPI does not provide a mechanism for detecting or for dealing with ambiguities and to
eliminate these ambiguities, OpenAPI properties must be semantically annotated and associated
to entities of a semantic model. This mapping can be achieved representing OpenAPI descriptions
using ontologies, for example ODIN ontology described in deliverable D3.2. These ontologies can
capture all information in a Semantic OpenAPI description. Properties of classes are mapped to
classes as well.

9 https://es.wikipedia.org/wiki/Especificaci%C3%B3n_OpenAPI

10 https://swagger.io/specification/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 16

Figure 4 OpenAPI Description11

In contrast to WoT Thing Descriptor, OpenAPI Documents can be implemented for service
description. As Figure 4 shows, it consists of many parts called objects that specify a list of
properties. For example, the Info object provides non-functional information such as the name of
the service, service provider, license information and terms of the service. One block, for example,
is the Info object, which contains information not relevant to the operation of the service such as
the name of the service, its provider, licenses, or conditions. There are also Documentation
objects that provide important information, such as the Documentation, Service object, which
details where the API servers are located, or Paths object that holds all the available endpoints.
finally, the description service contains all possible Tag objects: a Web Thing tag, a Properties
tag, an Actions tag and a Subscriptions tag. 12

11 OpenAPI Thing Descriptions for the Web of Things �t Tzavaras et al.

12 OpenAPI Thing Descriptions for the Web of Things �t Tzavaras et al.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 17

Figure 5 OpenAPI Thing Descriptor Example 113

In addition to properties and actions, the Thing can also support subscriptions. A subscription is
the result of subscribing to a particular resource in the Thing (such as a particular property or
action) and notifying you of changes in the Thing's state information (such as new temperature
values). Subscriptions are stored in the storage structure and can be retrieved via the subscription
ID (Thing Descriptor supports subscriptions to unsaved events).

x-refersTo is used to semantically associate the Actuator type of the smart door to the SOSA
ontology. The x-kindOf extension property is used to semantically annotate the Thing properties
(i.e., id, name) with concepts in www.schema.org vocabulary.

13 OpenAPI Thing Descriptions for the Web of Things �t Tzavaras et al.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 18

Figure 6 OpenAPI Thing Descriptor Example 214

The example in Figure 6 shows semantic annotations for smart door operations. In this case, the
operation is to delete the subscription using the subscription ID. The value of the property Is a
description of the operation type given by a URL that points to this semantic description. The
action types in the www.schema.org vocabulary provide a detailed hierarchy of action subtypes
that can be used in properties. Humans can see the operation description to understand its
intended purpose, but the machine needs additional information provided by the x-operationType
extension property.

14 OpenAPI Thing Descriptions for the Web of Things �t Tzavaras et al.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 19

2.2.3 Comparison between Web of Things and OpenAPI

Table 1 WoT vs OpenAPI Comparison15

WoT OpenAPI

ADVANTAGES:

�x WoT Thing Descriptor can be
enhanced with a context field for
converting the JSON format to JSON-
LD [2]

�x It can handle many protocols such as
CoAP, MQTT, WebSocket. [3]

�x WoT description uses events to
represent state transitions (simpler)
[4]

�x WoT is specific for IoT and it applies
to any IoT application domain, from
consumer electronics to heavy
industries

ADVANTAGES:

�x Enriched with text that can be
understood by humans providing
both, human and machine-readable
descriptions of Web services [1]

�x OpenAPI defines services in a way
that eliminates ambiguities and
provides Web Thing service
descriptions which are uniquely
defined and discoverable [6]

�x OpenAPI meets the HATEOAS
requirement of REST architectural
style [7]

�x It is possible to convert an OpenAPI
description to an ontology

�x OpenAPI is supported by a complete
tool pallet (e.g., editors, description
validators and client SDK generators)

DISADVANTAGES:

�x Description is a much shorter
document [1]

�x Ambiguities: The same property may
appear with different names [6]

�x Does not support HATEOAS
requirement of REST architectural
style [7]

DISADVANTAGES:

�x Does not support JSON-LD [2]
�x only supports HTTP(S) and webhooks

[3]
�x Subscription to property changes is

more complex [4]
�x Simpler security scheme than WoT

[5]

The main common disadvantage of these two technologies is that it is necessary to handwrite the
description of each resource on the ODIN platform. These are many resources across the entire

15 OpenAPI Thing Descriptions for the Web of Things �t Tzavaras et al.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 20

infrastructure and considering healthcare, technologies such as FHIR already have descriptions
implemented for many of the resources used in the smart hospitals being proposed.

Main Differences

�x Compared to OpenAPI, Thing Descriptor is a more abstract description of a Thing that
lets the client interact with the device (description is a much shorter document).
OpenAPI is detailed and complete: It fully describes the functionality of a device and
provides all the information a client needs to use the services it provides.

�x OpenAPI resorts to JSON or YAML and WoT to JSON or JSON-LD.
�x A Thing Descriptor may also refer to extra IoT protocols (e.g. CoAP, MQTT), while

OpenAPI only supports HTTP(S) and Webhooks.
�x Thing Descriptors can describe events, while OpenAPI documents can describe

subscription operations using Callbacks or Webhooks properties added to a Path object.
�x Similar Security scheme but more detailed in WoT Thing Descriptor.
�x Both have ambiguities but OpenAPI can eliminate them by mapping to semantic models

(ontologies).
�x OpenAPI meets the HATEOAS requirement of REST architectural style while WoT does

not.

2.2.4 FHIR
The HL7® FHIR® (Fast Healthcare Interoperability Resources) standard defines how healthcare
information can be exchanged between different computer systems regardless of how it is stored
in those systems. It allows healthcare information, including clinical and administrative data, to be
available securely to those who have a need to access it, and to those who have the right to do
so for the benefit of a patient receiving care. The standards development organization HL7®
(Health Level Seven®) uses a collaborative approach to develop and upgrade FHIR.16

Table 2 FHIR vs HL7v2 Comparison

FHIR HL7

�x It is a new standard

�x It simplifies implementation without
sacrificing information integrity

�x Can be used standalone or integrated

�x Supports and encourages alignment
to HL7's previously defined patterns
and best practices

�x It has been in existence and in use for
20 years.

�x It was the first information exchange
standard and is one of its most widely
adopted

�x Uses messages composed of re-
usable segments to communicate
healthcare-related information

16 https://www.hl7.org/fhir/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 21

�x All exchangeable content is defined as
a resource.

�x It is developer friendly

FHIR resources can be defined by thing descriptions, but this happens at two levels of varying
complexity. The first level consists of simply representing things that use FHIR resources with a
thing descriptor. The second level aims to deepen the definition of FHIR resources to ingest and
use the data produced by these services.

In the first case, to describe a resource, for example, which generates FHIR information, this data
production can be represented as an action. On the other hand, for FHIR resource consumption
to produce data that can be interpreted by machines, it is necessary to go beyond defining an
action in the Thing Descriptor. The FHIR specification defines its resources using a template-
based data model, making human interaction necessary for the interpretation of its meaning. To
create machine-interpretable representations, one needs to transition from syntactic models
based on serialisation formats to formal semantic models that are serialization-agnostic. In other
words, FHIR resources need to be described using a formal ontology.17

The main advantage of using FHIR in the ODIN project is that it is a formalized and matured
definition accepted worldwide for healthcare use cases. This implies that the vast majority of the
services and resources used in the proposed smart hospitals are already defined in the FHIR
documentation. FHIR devices include durable (reusable) medical equipment, implantable
devices, as well as disposable equipment used for diagnostic, treatment, and research for
healthcare and public health, as well as devices such as a machine, cellphone, computer,
software, application, etc. The Device Definition resource is used to describe the common
characteristics and capabilities of a device of a certain type or kind, e.g., a certain model or class
of a device such as an x-ray model or personal wearable device model, whereas a Device
resource documents an actual instance of a device such as the actual x-ray machine that is
installed or the personal wearable device being worn. There are not only devices among the
resources described, FHIR has a wide variety of resources in its description, all related to the
health sector. Among these we can find locations, personnel, diseases, organizations,
medicines... This is very convenient for the ODIN project since most of the resources to be used
are already defined.18

17 Gatekeeper, Web of Things (WOT) Reference Architecture �t D3.3.2

18 https://build.fhir.org/devicedefinition.html

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 22

FHIR has been working for years, it is limited to the syntactic part delegates perfectly all the
semantic terminology and allows the use of a great variety of clinical technology. Besides, all the
operations and relationships have to be established, which is not as inconvenient as having to
write one by one all the descriptors as it happens with WoT or OpenAPI. Finally, a capability
statement must be defined. This is a set of capabilities (behaviours) of a FHIR Server for a
particular version of FHIR that may be used as a statement of actual server functionality or a
statement of required or desired server implementation.19 On the other hand, FHIR has many
other advantages such as being open-source, free, easy to implement and developer-friendly.

19 https://www.hl7.org/fhir/capabilitystatement.html

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 23

3 Resource Gateway
3.1 Requirements Review
The Resource Gateway oversees connecting all the resources to the platform and to the rest of
the services available in it.

Most important requirements are:

�x Allow easy connection of new resources.

�x Follow an Enterprise Service Bus approach with a messaging system.

�x Be the gateway to the rest of the services.

�x Allows access to the services in a secure way

3.2 Architecture Review
From the D3.10 ODIN platform v1, the architecture follows a service bus where all the services
can communicate, as depicted in Figure 1.

Important services or components of the architecture proposed are:

�x The Service Bus, which allows exchanging messages among services in the platform.

�x The Gateway, which oversees connecting users and external services to the platform in
a secure way.

�x The transport services that connect to the resources, such as IoT, robots and other
services. Those services read or write information from and to the resources bridging
protocols and making them interoperable through the platform.

D4.1 CPS-IoT Resource Management System Specification reviews several technologies to be
used for the whole architecture of the CPS-IoT system.

In the following section, a light overview of concrete solutions of those technologies will be carried
on discussing the best options.

3.3 Applicable Solutions for Messaging Bus
3.3.1 Kafka
As Kafka website20 announces, Apache Kafka is an open-source distributed event streaming
platform used by thousands of companies for high-performance data pipelines, streaming
analytics, data integration, and mission-critical applications.

20 https://kafka.apache.org/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 24

Kafka follows the pub/sub architecture and is useful for data integration as they claim and is based
on SCALA language.

Most important attributes of Kafka are, scalability, high throughput, distributed, reliability as
storages every message sent and high availability. All the mentioned attributes are pointed as
must in D2.2 Hospital Requirements Report.

Moreover, the ecosystem it has, makes Kafka very appealing as it supports lots of client libraries
to be used in applications to read, write, and process event streams, in addition to its out-of-the
box support for other tools, such as databases, message systems, analytic platforms and many
more.

Kafka is based on several concepts through which covers its mentioned attributes:

�x Server: Kafka servers do have 2 implementation modes and are the base of the
infrastructure. The first mode is the Broker or storage, where messages are received and
stored in topics. The second mode is supported by Kafka Connect, which connects to the
integrated systems to read and write event streams from and to Kafka brokers. The
servers can run individually or in cluster across different datacentres or cloud regions.
Each Kafka cluster can also connect to other Kafka clusters. In a cluster, if a Kafka server
goes down, the rest take its workload to continue working.

�x Client: clients make possible to read and write data to applications and services in a
distributed way. Lots of client libraries exists and specific libraries to process streams are
also available like Kafka Streams and a REST API to connect directly in case no library is
available.

�x Event, topics, Producer and Consumer: these are the same concepts in pub/sub
architecture21. To summarize, Producers create messages in the form of Events that are
stored in Kafka in Topics or themes that Consumer read.

�x Partition: topics are distributed among several Brokers, so the workload is distributed also,
providing scalability. If a copy of the topic is created in another datacentre, then we
provide fault-tolerance and reliability.

21 Please refer to D4.1 CPS-IoT Resource Management System Specification. Section 6.5 Event Driven Architecture.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 25

Figure 7 Kafka Architecture with partitions

Security

The default setup 22lets any producer or consumer, write, or read messages to and from any topic,
which is not very appealing in some cases where multitenancy is implemented with one cluster.

Kafka allows several security measures beyond partitions which are not protected. SSL
encryption is available at the cost of some performance degradation. SSL (mutual certificate
authentication) or SASL authentication (Simple Authorization Service Layer) which supports
several kinds of authentication, is also a good option when there is a need of identifying which
applications can connect to the system. To complete the security options, to get a tighter control,
authorization can be accomplished using Authorisation Control Lists, so using a rule-based list, it
can be defined exactly what producers/consumers can do.

Metrics

Kafka uses Yammer Metrics for server and cluster operation but uses its own Kafka Metrics when
it comes to the clients connecting to Kafka, so they use another format, but both expose them
through JMX, which helps caring about the messaging system wellness. There are lots of metrics
available23, mostly related to messages statistics and cluster status. Depending on the component
(server, producer, stream, consumer) the metrics change.

Deployment and setup

Regarding deployment, Kafka does not offer its own solution to be used on Kubernetes but can
be used using Strimzi24. This eases its configuration and deployment as this opensource project
maintains Kafka images and tools to use it with Kubernetes.

22 https://kafka.apache.org/documentation/#security

23 https://kafka.apache.org/documentation/#monitoring

24 https://strimzi.io/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 26

Regarding the setup, Kafka can be configured using files or programmatically, which offers a
dynamic management in case it is needed to be integrated form a management component for
example.

Other options available are automatic creation of topics or manual creation, adding another plus
of dynamic behaviour and automation facilities.

3.3.1.1 Usage in ODIN

Kafka is useful for several use cases, but the most important and the ones that can be profitable
for ODIN are:

�x Messaging like a message broker would do, but with better throughput than RabbitMQ or
ActiveMQ, which are traditional message brokers.

�x Metric and aggregation and data availability to be processed. This way Kafka can help
routing the data to the right tools to monitor systems or applications and process IoT data
for example.

�x Stream processing is another field were Kafka shines, providing a very powerful tool to
perform real time or batch processing. This way, data gathered from IoT devices for
example, can be processed to enrich the data to get more complete messages that are
meaningful for other services or applications connected to Kafka.

Although is very powerful, Kafka lacks routing capabilities or priority queues as it serves messages
in the received order.

Defining and implementing a very rich messaging protocol and a careful topic selection should be
done if we decide on using Kafka. This decision will be taken in the next phase of the task.

3.3.2 RabbitMQ
RabbitMQ25 is a traditional messaging broker based on the AMPQ protocol which supports
pub/sub and point to point communication, but it also supports other protocols such as STOMP
and using and HTTP bridge can send MQTT messages with some limitation.

RabbitMQ is also open source as Kafka, and beyond pub/sub which is the mechanism most
aligned with ODIN's architecture, its main attributes are also aligned with ODIN requirements.

Message queuing with prioritization and routing based on topics or message content provides the
roots for data integration requirements.

25 https://www.rabbitmq.com/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 27

Figure 8 RabbitMQ components

In Figure 8 it can be seen the usual pub/sub components plus the roots of the broker, where the
Exchange component is in charge of routing the messages to the correct queue using defined
rules.

Security

Security is assured with authorization and authentication mechanisms such as OAUTH, and
support basic User-Password, HTTPS and Lightweight Directory Access Protocol (LDAP) or other
sources of identity and authorization such as digital Certificates.

Reliability is achieved with the ability to check message delivery status with confirmation
acknowledge and data replication using Raft consensus algorithm on cluster mode and Quorum
queues, which are better than just data replication, avoiding process faults or data loss.

High availability through cluster and data federation is also available using plugins that make
possible to have nodes in a cluster dispersed geographically.

Metrics

Another plus for RabbitMQ it is the Management UI it must control all the functionality. This helps
getting a one place to perform all the logistics and monitoring.

Monitoring the bus and getting metrics from the nodes also is a very good feature. MQRabbit can
be easily integrated with Prometheus and Graphana to do so. Monitoring the wealth of the bus is
key to keep things working. Number of messages sent and remaining in the queues, and other
metrics are also important to manage the message bus status. By the way MQRabbit reports
most usual infrastructure metrics such as CPU, memory usage, throughput among others.

Deployment and Setup

RabbitMQ offers good integration with Cloud and DevOps tools, making it a good deal when high
speed development is a requirement.

Bare metal deployment is useful for small projects, but big ones need tools such as Docker or
Kubernetes, to manage clusters and RabbitMQ offers 2 plugins for Kubernetes. First plugin is
Cluster Kubernetes Operator that automates provisioning, management, and operations of
RabbitMQ clusters running on Kubernetes. The second one is RabbitMQ Messaging Topology
plugin, which manages RabbitMQ messaging maps within a RabbitMQ cluster using the
RabbitMQ Cluster Kubernetes Operator.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 28

As previously commented, RabbitMQ offers a Management Dashboard so once started the
broker or cluster, it can be managed. On the other hand, part of the setup must be handled using
configuration files.

3.3.2.1 Usage in ODIN

As Kafka, RabbitMQ is useful to be used as the service bus where all the components and services
connect to exchange data. The routing capabilities, queue support and pub/sub make it good to
connect high level components and services of ODIN architecture.

Due to its performance limitations, data analytics or high volume of data integration may not be
its strong point. It also lacks stream processing but may be integrated with other tools and
libraries.

3.3.3 Bus Solution Comparison
In the following table, a light comparison among the solutions is performed to discuss which one
is better for implementing the messaging bus.

Attributes (1-none, 10-all) MQRabbit Kafka Reason

Requirements fit 9 8 Kafka is more oriented to streams
and has less options than RabbitMQ
out of the box26

Ease of adoption 8 7 More is better. References7,27 point
that Kafka is harder to adopt

Scalability 7 10 Ping checks and some monitoring
task, plus confirmation of messages
have a bad impact on RabbitMQ.
Kafka has horizontal scalability while
RabbitMQ has vertical scalability.

Reliability 8 9 Both support good means to deliver
and track the messages

Security 10 10 Both include similar options
(Kerberos, OAuth, etc)

Data integration 10 10 Both serve for data integration.

26 https://www.cloudamqp.com/blog/when-to-use-rabbitmq-or-apache-kafka.html

27 https://freshcodeit.com/blog-introduction-to-message-brokers-part-1-apache-kafka-vs-rabbitmq

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 29

Support 8 8 Documentation is well supported
and there are lots of resources for
both

Deployment facilities 10 8 Kafka does not offer Operators for
Kubernetes, while RabbitMQ does.

Size of project to be used 5 10 More is better. RabbitMQ is for small
to medium projects, Kafka is for
medium to big projects. Scale is
assuming that ODIN is mid to big.
Averall recommendations from
references7,28

License Mozilla
Public
License
2.0

Apache
License 2.0

Both are open-source. Kafka has
Apache License 2.0 (non-copyleft)
while RabbitMQ has Mozilla public
license 2.0 (weak copyleft)

Number of projects using
it

1831 1251 References29

Number languages 10 5

Monitoring 10 10

Hard dependencies on
other projects or
solutions

Developed
with Erlang

Apache
Zookeeper for
shared
configuration

Innovation impact 5 10 RabbitMQ is a traditional messaging
broker. Kafka is being used in top
projects not only for analytics but
also for messaging bus by
enterprises such as Zalando and
other top ones.

Routing capabilities 10 0 It is still under analysis whether
routing or storage is needed

Storage 0 10

Multi-tenant 10 10

Real time 0 8 RabbitMQ is not suitable for real
time. Kafka can work in near real

28 https://freshcodeit.com/blog-introduction-to-message-brokers-part-1-apache-kafka-vs-rabbitmq

29 https://stackshare.io/kafka

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 30

time, being end-to-end latency from
producer to consumer as low as
~10ms if the hardware and network
setup are good enough.

Pub/sub 10 10

Queuing 10 9

Other solution that has been considered is MQTT which is not as suitable as the presented ones.
MQTT is suited to support communication over an unreliable network and scales bad. Also,
ActiveMQ is another option similar to RabbitMQ.

3.3.4 Features Implemented in the First Version
For the first version of the platform the list of features to be implemented are:

�x A mechanism to decide the list of the topics that need to be created in the messaging bus
related to resources, services, and storage

�x A mechanism to implement response to the message sender, when needed in case the
bus does not support it.

�x The configuration of the bus to work under the situations to be managed

3.4 Applicable Solutions for the Gateway
3.4.1 APIMAN
APIMAN30 is an opensource project under RedHat umbrel�O�D�����F�U�H�D�W�H�G���W�R���P�D�Q�D�J�H���$�3�,�p�V��

�$�3�,�0�$�1�� �V�H�S�D�U�D�W�H�V�� �I�U�R�P�� �W�K�H�� �$�3�,�p�V�� �F�R�G�H�� �W�K�H�� �W�D�V�N�V�� �R�I�� �F�R�Q�W�U�R�O�O�L�Q�J�� �$�3�,�� �V�H�F�X�U�H�� �D�F�F�H�V�V���� �W�K�U�R�W�W�O�L�Q�J����
quotas, metrics and API developer portals to publish documentation.

In the following image it is described how the API Gateway manages the API requests, acting as
a proxy gateway.

30 https://www.apiman.io/latest/index.html

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 31

Figure 9 APIMAN Gateway schema

Another strong point is the support of UI and REST API to manage APIMAN, offering powerful
option to automate tasks to be integrated for example with a Management module for ODIN
platform.

Security

The secure access has several options to control who, what for and when any application or user
can access the exposed endpoints. APIMAN is fully integrated with KeyCloack, which has already
been selected on WP3 to be the source of identity and authorization. Moreover, APIMAN can
specify different rules for the different versions of the API published and control different
configurations for each application connecting to them.

APIMAN data model is around Organizations, Plans, APIs, Client Apps and Policies. With these
concepts, it manages everything around.

Figure 10 APIMAN data model

As illustrated in Figure 10, an API represents the endpoints exposed to the world. An Organization
is the holder or owner of an API that is published. The Client Apps use the API under some
restrictions defined in the Policies. The Policies control the rules to be applied to an API. The Plans

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 32

are sets of Policies to be applied to an API for different Client Apps, so an Organization can have
an API with 2 plans and each Plan is used by different Clients because one uses a free reduced
access of the API and another Client uses a premium access with higher throttling, quotas and
permissions. The model is very powerful.

The way APIMAN handles requests to the API is controlled by API Key, so a Client App must use
a valid API Key attached to the request to call the API. Once the PAI Key is verified, the API
Gateway (APIMAN) resolves all the polices against the request. When the API resolves the work
to be performed in the call, answers to the Gateway which resolves new policies until returns the
response to the Client App.

The types of policies to be applied can be grouped into:

�x Security policies: type of authentication (Basic, Mutual TLS with certificates), whitelisting,
etc

�x Limiting policies: rate of requests per second, number of requests during a period of time,
etc.

�x Modification policies: url rewriting, json transformation, etc.

�x Other: cache, logging, etc.

Metrics

Once an API is published, metrics can be obtained in the form of time to resolve requests, time
to process the API request to response time, endpoint resolving the requests, status of the
requests, throughput, bytes uploaded and downloaded per endpoint, etc.

Which is more important is that metrics can be accessed through REST API or using the UI
management board.

Metrics are recorded in Elastic Search, so, it is a dependency during deployment.

Deployment and Setup

APIMAN can be deployed as a single gateway or can be configured to offer several gateways
which can be very useful to manage Production and Development environments, easing DevOps
approaches.

APIMAN uses JBOSS or Wildfly to run, using JAVA 1.8. Moreover, APIMAN supports Docker so
other deployments can be used through Kubernetes for example.

The Console Manager helps creating the Organizations, Plans, Policies and Client applications,
making easy the set up. API are also published using the manager.

For example, after publishing and API it can be accessed using the following schema:

http://gatewayhost:port/apiman -
gateway/{organizationId}/{apiId}/{version}

So, the URI, contains the address, port and the Organization and API ID, plus the version. This
allows publishing several versions of an API, coexisting.

3.4.1.1 Usage in ODIN

APIMAN can be used as an API Gateway to publish the platform API to external Application clients
�R�U���V�H�U�Y�L�F�H�V�����,�W�p�V���L�Q�W�H�J�U�D�W�L�R�Q���Z�L�W�K���.�H�\�&�O�R�D�F�N���D�Q�G���V�H�W���X�S���I�D�Filities makes it a very good candidate to
implement ODIN Resource Gateway.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 33

The plans can be used to publish different API for example to be used from external services or
internal services of the platform with a unique tool, controlling not only version access but
monitoring and controlling quotas and throttling.

The management API is something that makes APIMAN very appealing as it leads the
implementation of dynamic resource API publishing, something that is desired in the ODIN
platform.

Finally, the Developer Portal is a plus, as eases the management of the documentation for each
version of the API, making I available to the developers.

3.4.2 Features Implemented in the First Version
The following actions could be the first steps to be covered.

�x Define the data model for the API Gateway, naming the organization for each hospital,
defining plans and policies.

�x �'�H�I�L�Q�H���W�K�H���$�3�,�p�V���D�Q�G���V�H�U�Y�L�F�H�V���W�K�D�W���Z�L�O�O���E�H���S�X�E�O�L�V�K�H�G��

�x Create the dynamic API publish controller, so resources can publish their API when
registering

�x Define the publish strategy for production and development

�x Define the versioning strategy

3.5 Applicable Solutions for Transport Services
Transport service manage the task to get the data for IoT, Robots, AI and Data resource, and
help introducing the data into ODIN platform.

There exists lots of types of protocols and approaches. One approach is to create an adapter
between protocols, second one is to use pre-created adapters and finally using a platform which
already has integration to those resources, such as an IoT platform. The first approach is out of
the scope due to the huge number of different protocols that potentially could be integrated into
ODIN.

3.5.1 Apache Camel Components
Apache Camel31 is an open-source project which mission is to provide an integration framework
in order to connect different systems producing and consuming data.

Apache Camel follows the enterprise Integration Patterns presented in D4.1 CPS-IoT Resource
Management System Specification, Section 6.2 Enterprise Integration Patterns, offering a wide
range of components that are premade, such as adapters.

31 https://camel.apache.org/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 34

Camel has several core concepts over which creates its integration framework and architecture.

The CamelContext is the runtime where everything is integrated and serves as the point of access
to the rest of the modules.

The Routes are definitions that can be set using DSL language or programmatically, to set the
path that a message follows inside Camel. A route has 1 input and one or several outputs.

Processors or message filters are the handlers of messages between other modules in Camel to
transform, enrich validate or perform more complex tasks with the messages, implementing all
�W�K�H���(�,�3�p�V��

Finally, the Components are the exposed endpoints to integrate external systems and are the
most important for the WP4.

An overview of the concepts and architecture is shown in the following image.

Figure 11 Apache Camel Core concepts and Architecture

Security

Apache Camel offers several types of security levels, where the most important is at route level.

To summarize:

�x Route Security �t Any interaction can be forced to be authenticated and authorized. To
support this, Apache Shiro and Spring Security can be used.

�x Payload Security - Messager encryption/decryption services can offer secrecy among
endpoints of the routes, so the data remains encrypted while in the pipes. The operations
can be on part or full message.

�x Endpoint Security �t In case any endpoint wants to implement its own security in terms of
authentication, authorization, or encryption, it is also possible, beyond the security offered
at route or message level.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 35

�x Configuration Security �t This kind of Security is used to manage sensitive information from
configuration files that can be distributed or local.

Metrics

Camel offers JMX support32 by default, so it can be monitored several points out of the box. This
supports offers integration with tools such as Prometheus which is one of the most promising tools
�W�R���E�H���X�V�H�G���L�Q���2�'�,�1�p�V���.�3�,���D�Q�G���P�R�Q�L�W�R�U�L�Q�J���F�R�P�S�R�Q�H�Q�W��

Network and Java Virtual Machine checks are available through pings and remote invocations to
get data about the JVM and the applications running on it.

Common CPU, Memory and Disk metrics are basic information included with JMX support.

�7�K�H�� �N�H�\�� �P�H�W�U�L�F�V�� �D�E�R�X�W�� �&�D�P�H�O�� �D�U�H�� �D�O�V�R�� �H�[�S�R�V�H�G���� �V�X�F�K�� �D�V�� �U�R�X�W�H�p�V�� �V�W�D�W�X�V���� �F�R�P�S�R�Q�H�Q�W�� �O�L�V�W�� �D�Q�G��
behaviour, list of processors, thread pools and lots of information to check the status of Camel.

Deployment and Setup

Apache Camel can be deployed in typical environments with web server like Tomcat or Wildfly,
using it embedded in a Java application, using containers such Spring Boot or as an OSGI
container as Apache Karaf, but all of them start with creating a CamelContext.

Each of the ways to use Camel offer pros and cons. For example, Java applications offers flexibility
�E�X�W���V�W�D�U�W���D�Q�G���V�W�R�S���O�L�I�H�F�\�F�O�H�V���L�V���K�D�U�G���D�Q�G���W�H�G�L�R�X�V���D�Q�G���D�O�O���W�K�H���-�$�5�p�V���P�X�V�W��be loaded into the app.

Containers and web servers handle better Camel lifecycle and offer monitoring but are more
resource consuming.

At the end what is most important is that usually running Camel in production must be started
carefully to avoid errors with the routes, so a good setup must be performed.

Beyond those traditional deployments, clustered deployments are also available to support
scalability. Clusters can be handled using load balancers, active/passive or active/active routes,
and other means but those are very hard to manage as require a lot of configuration.

To solve this problem, Camel offers the possibility to be used with Docker and Kubernetes not
only using images but offering Apache Camel K33, a subproject of Apache Camel, which is a
lightweight integration framework that runs natively on Kubernetes and deploys integration code
using serverless and microservice architectures in the cloud. Users of Camel K can run code
written in Camel DSL using Kubernetes or OpenShift. It is important to mention Camel K
components are called Kamelets but are different from Camel Components.

Another important subproject is Camel Kafka Connector, which allows using all Camel
Components as extensions of Kafka, expanding new integration to Kafka Connect to the Kafka
messaging bus.

32 Camel in Action 2nd ed. ISBN 1617292931. Claus Ibsen, Jonathan Anstey. Chapter 16.1

33 https://camel.apache.org/camel-k/1.8.x/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 36

3.5.1.1 Usage in ODIN

Apache Camel has Components34 for several systems that are of interest, to name a few, the
following table is attached. The list contains most important components for WP4 and ODIN.

Those components would cover the Transport Services for several integrations to IoT, Data, AI
and Robots, plus transformation message tasks.

Component Description Reason

REST Expose REST services or call external
REST services.

To connect to systems with REST
interface

XSLT Transforms XML payload using an XSLT
template.

Process messages in XML format

ActiveMQ Send messages to (or consume from)
Apache ActiveMQ.

Integration with messaging bus

AMQP Messaging with AMQP protocol using
Apache QPid Client.

Integration with messaging bus

Async HTTP
Client

Call external HTTP services using Async
or Websocket

Integration with systems

AWS, Azure,
Google

Integration with several AWS, Azure,
Google Cloud services

Hybrid cloud platform integration

CoAP Send and receive messages to/from
COAP capable devices.

IoT device integration

MQTT Send and receive messages to/from
MQTT brokers.

IoT & Robot device integration

Debezium Capture changes from several database
types (SQL, NOSQL)

Data integration

Deep Java
Library

Infer Deep Learning models from
message exchanges data using Deep
Java Library (DJL).

AI integration

Docker Manage Docker containers Management integration

Elasticsearch Send requests to ElasticSearch via REST
API

Analytics and AI integration

34 https://camel.apache.org/components/3.15.x/index.html

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 37

FHIR Exchange information in the healthcare
domain using the FHIR (Fast Healthcare
Interoperability Resources) standard.

Health data integration

Huawei Use Huawei Cloud Hybrin Cloud integration

IEC 60870 Client and server SCADA communication IoT and M2M control

Ignite Ignite operations management,
execution and control

Analytics

IOTA Blockchain transaction on IOTA Distributed ledger technologies on
IoT

Web3J Blockchain transaction on Ethereum DLT

JDBC Database access using JDBC Data integration

JPA Store and retrieve objects from SQL
databases

Data integration

JSON Several JSON components to handle
JSON data

Data transformation

Kafka Send and receive messages to/from
Kafka

Messaging bus integration

Kubernetes Kubernetes management Management

RabbitMQ Send and receive messages form
RabbitMQ

Messaging bus integration

MongoDB Mongo data operations Data integration

Modbus Modbus bridge Modbus integration

Nagios Send passive checks to Nagios using
JSendNSCA

Analytics and monitoring

OPC UA Industrial machine communications M2M and IoT integration

Paho MQTT communications using Eclipse
Paho

IoT integration

Rest
OpenAPI

Configure REST producers based on an
OpenAPI specification document
delegating to a component implementing
the RestProducerFactory interface.

System integration and API
publishing

SFTP SFT integration Data integration

SLACK Send and receive messages from SLACK Data integration, monitoring,
support

SQL Perform SQL queries as a JDBC Stored
Procedures using Spring JDB

Data integration

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 38

STOMP Send and receive messages to/from
STOMP (Simple Text Oriented
Messaging Protocol) compliant message
brokers

Data integration

Table 3 Camel Components

Beyond the Components, Camel also supports around 46 data types, related to the systems it
supports integration such as JSON, FIHR, HL7 and other ones such as barcodes, gzip.

With those tools, the task to integrate any resource become easier with little customization or
development.

In case an integration using Camel K with Kamelets is implemented, the Kamelet catalogue
�V�X�S�S�R�U�W�V�� �F�R�Q�Q�H�F�W�L�Y�L�W�\�� �W�R�� �W�K�H�� �P�R�V�W�� �L�P�S�R�U�W�D�Q�W�� �V�\�V�W�H�P�V�� �X�Q�G�H�U�� �2�'�,�1�V�p�� �L�Q�W�H�U�H�V�W���� �V�X�F�K�� �D�V�� �.�D�I�N�D����
MQTT, FTP, SQL, NOSQL, FHIR, RabbitMQ and much more.

The advantage of Camel is the availability to connect to IoT, Robotics, Data and AI resources at
the end.

3.5.2 EdgeX IoT Platform
EdgeX is an opensource platform, started by Dell and donated to the Linux Foundation with the
mission to be a highly open, flexible and scalable software platform to interconnect devices on
the IoT edge with enterprise application, with a vendor neutral mindset.

With those premises, EdgeX allows the interconnection of devices to the applications or cloud of
a company or entity, acting as a bridge where operations and AI can be performed at the edge.

Figure 12 EdgeX Mission

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 39

This has several advantages as the data is distilled and processed at the edge, so actions can be
taken near real time or real time, with low latency and valuable information can go up to the
applications with less effort in terms of data transferred, saving time and costs.

The architecture of EdgeX is based on several layers and concepts:

Device Services: to connect to the devices at the edge. This layer supports proprietary and
standard protocols such as REST, OPC-UA, MODBUS, MQTT, SNMP, BACNET, ZigBee, BLE
and many more that can be developed. This layer offers the Device Service component that acts
as a representation of the device in the platform, so it handles communication, setup and
transforming data before transferring to the upper layers. In addition, offers device discovery
capabilities. This layers also offers an SDK to integrate any device using C or Go Lang.

Core Services: is the base of the platform to perform data storing and transformations,
communicate the upper-level services with the devices and hold the setup and meta data of the
devices.

Supporting Services: here starts the layer providing operations and intelligence to the platform.
Basic services are logging and alerts or notifications. Beyond those, edge analytics is provided,
and task schedulers are available.

Exporting and Application services: this layer provides connectors and data transformation to
integrate external systems, such as AWS, enterprise applications, Azure, Google Cloud, and other
systems. It can define pipelines of data flows to process data form the Core services. An SDK is
available so in case a system has no integration, so data can be retrieved from the messaging
bus and filtered and transformed.

Security: This layer offers several services, such as Secret store, API gateway with authentication
and authorization, control and manage secure access of users, services and devices, secure
communication at core services.

Management: The platform offers management services to configure itself, and an agent to be
integrated with externa applications or systems that want to control the platform. Currently this
layer is optional as EdgeX supports management through Kubernetes to perform start/stop and
other tasks.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 40

Figure 13 EdgeX Architecture

Security

This is a topic that EdgeX handles very well as not only secures the access to the platform from
the applications and user level, but it also manages the access form the device point of view,
which means that in case a rogue device is connected, EdgeX can minimize the risks
disconnecting it.

The security layer provides lots of services that bring trust to any part of EdgeX. Every
communication is secured with HTTPS by default and Json Web Tokens are used as the base to
give access to the platform.

Regarding authorization, Authorization Control Lists are available for fine grained management of
services and devices.

Metrics

EdgeX does not shine because of its metrics section. From its Management UI it can be checked
CPU, RAM, network traffic and other system metrics from a concrete EdgeX instance. This topic
must be enhanced to provide better understanding of the cluster. On the other hand, device
management offers a nice understanding of the device status.

Deployment and Setup

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 41

EdgeX offers Docker35,36 images for all of its components and Docker Composer files, but it is
possible also to deploy it through Kubernetes37. This eases the tasks to start with EdgeX.

The setup can be performed using the Management layer agents, but the documentation points
that those modules are going deprecated in the following months in favour of the tools provided
by Kubernetes. Anyway, the management modules allow handling new devices, configurations,
and large range of options.

3.5.3 Transport solution comparison
In the following table, a light comparison among the solutions is performed to discuss which one
is better for implementing the messaging bus.

Attributes (1-none,
10-all)

Camel EdgeX Reason

Requirements fit 7 8 Camel can be used to connect lots of resources but
lacks some functionalities that are present in an IoT
platform as EdgeX. It gives more freedom of choice
on how to develop the needed components. EdgeX
is an IoT oriented platform, but to integrate devices
modifications on the devices must be performed.
EdgeX also fits very well as IoT integrator and could
also work for robots but will not fit for some types of
resources.

Ease of adoption 10 7 Camel is very easy to use, while EdgeX is harder to
understand and less open.

Scalability 8 10 Camel can be used in clusters with configuration.
EdgeX is prepared to work as Docker services that
work together using Docker Compose or Kubernetes

Reliability 7 9 Camel depends on the component and the
implementation adopted. EdgeX is more atomic in
terms of reliability

Security
(kerberos, oauth,
etc)

8 10 Some Camel components allow to implement
security using interceptors when used alone but is
harder to keep security at device level. That security
is built on top of the security provided by Camel

35 https://docs.edgexfoundry.org/2.2/getting-started/Ch-GettingStartedDockerUsers/

36 https://docs.edgexfoundry.org/2.2/getting-started/Ch-GettingStartedUsersNexus/

37 https://www.lfedge.org/2020/06/25/edgex-foundry-kubernetes-installation/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 42

context. EdgeX has security very well covered at
device level also.

Data integration 10 10 Both are integration frameworks

Support 10 6 Camel has lots of resources. EdgeX has less
resources38

Deployment
facilities

9 10 Both allow quite complete options to deploy and
setup them.

Size of project to
be used

8 9 Apache Camel may depend its suitableness on the
implementation adopted, but it has to take into
account that the module for translation is something
small to mid-size, as it is going to work on each
hospital. EdgeX is expected to work as 1 deployment
per location, so it also has a nice fit on the size
required.

Cost 10 9 Both opensource, but EdgeX may have more cost in
terms of adoption

Number of
projects using it

- - No concrete data found. Camel is used by big
companies, hospitals and other entities to perform
integration, while an example of EdgeX users is Dell,
Accenture, Intel, Wipo39

Number
languages

7 2 Camel supports more languages but does not mean
they serve to do everything. Main language is Java.
EdgeX support C and Go Lang.

Monitoring 10 7 As stated EdgeX has fewer monitoring tools.

Hard
dependencies on
other projects or
solutions

 Not known

Innovation impact 6 8 EdgeX is newer and it has a promising future in the
IoT domain.

AI capabilities 0 8 EdgeX includes rules and small AI decision tools

Storage 0 0 Both can forward data to where it needs to be stored

38 https://medium.com/nerd-for-tech/using-edgex-as-an-iot-middleware-6074288ca6dd

39 https://www.edgexfoundry.org/why_edgex/why-edgex/

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 43

multi-tenant 5 4 EdgeX is supposed to have an instance per location.
Camel must adopt communication using JMS or
other channels to interconnect different
CamelContext.

Real time 8 8 Both expose cases to use them in RT.40,

pub/sub 10 10 Both support pub/sub messaging.

multiprotocol
support

5 0 For Camel it depends on the upper layers.

Other solutions that could be used could be Eclipse Kura and OpenRemote, but both are aligned
with EdgeX platform approach and need to modify the firmware of devices or at least the
gateways.

3.5.4 Features Implemented in the First Version
For the first version of the Transport Protocol Services the decisions to be performed are:

�x Select the right implementation strategy (platform vs components)

�x Define the initial protocols to be supported

�x Define the message format to be used as entry point to the platform

�x Define the topics and the topic strategy to be used at resource level

�x Define the input/output flows that resources need to fill the use cases

40 https://dzone.com/articles/real-time-data-batching-with-apache-camel

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 44

4 Measurement Collection Software Components
4.1 Requirements Review
Gathering metrics, monitoring components, and configuring alerts is a fundamental piece for
setting up and overseeing a service-based system. Having the option to determine what's going
on inside a framework, what assets need consideration, and what is causing a stoppage or
blackout is necessary. While planning and monitoring can be a challenge, including it from the
beginning into the service infrastructure is an important added value that assists the teams with
focusing on their work, delegating the obligation of oversight to an automated system. Coming
from the requirements we have identified 3 main use cases related to the measurement collection
software:

1. Monitoring system performance.

2. Monitoring activities and tracking of services.

3. Monitoring of RUC performance and KPIs.

4.2 Architecture Review
Every architecture for measurement collection can be summarized with the triad:

�x Metrics

�x Monitoring

�x Alerting

Metrics represent the raw measurements of resource usage or behaviour ���W�K�H���q�E�X�V�\�Q�H�V�V�r���R�I���D��
component) that can be observed and collected throughout a system. These might be low-level
usage of resources provided by the operating system, or they can be higher-level types of data
related to the specific functionality of a service, like requests served per second from a service
endpoint. One special type of metric is system logs, which even though they usually are text
messages with some metadata (like a time stamp), are fundamental for auditing any problem, and
can potentially be post-processed as other sources for system performance metrics.

While metrics represent the data within a system, monitoring is the process of collecting,
�D�J�J�U�H�J�D�W�L�Q�J���� �D�Q�G�� �D�Q�D�O�\�V�L�Q�J�� �W�K�R�V�H�� �Y�D�O�X�H�V�� �W�R�� �L�P�S�U�R�Y�H�� �D�Z�D�U�H�Q�H�V�V�� �R�I�� �\�R�X�U�� �F�R�P�S�R�Q�H�Q�W�V�p��
characteristics and behaviour. The monitoring system is responsible for storage, aggregation,
visualization, and initiating automated responses when the data values meet specific
requirements. In general, the difference between metrics and monitoring is equal to the difference
between data and information. Data is composed of raw, unprocessed facts, while information is
produced by analysing and organizing data to build contexts with added value. Monitoring takes
metrics data, aggregates it, and presents it to humans to extract insights from the collection of
individual pieces.

Alerting is the component of a monitoring system that performs actions based on changes in
metric values. Alerts definitions are composed of metrics-based conditions, and actions to be
performed when the values of the metrics don't match the acceptable conditions. While
monitoring systems are incredibly useful for active interpretation and investigation, one of the
primary benefits of an alerting system is letting administrators disengage from the system. Alerts
allow defining situations that make sense of automated and active management of the system
while relying on the passive monitoring of the software to watch for changing conditions.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 45

The ODIN platform could offer an interesting service for deployers, that is the capability to
automatically sharing monitoring and alerts when soliciting support. The platform could include a
component to manage support provided by ODIN platform owners (T3.4 within the project), this
component would allow system administrators to communicate directly with support providers
and attach, annotate, or reference, monitoring information and alerts for quicker resolution of
issues. Another option for the platform, like many commercially available systems, is to share
anonymous performance metrics with the platform owner in order to improve the system overall.

4.3 Applicable Technology
4.3.1 Prometheus
Prometheus41 is open-source computer monitoring and alerting software. It records metrics in real
time in a time series database (with high capture capacity) based on the content of the entry point
exposed using the HTTP protocol. These metrics can then be queried using a simple query
language (see PromQL below) and can also be used to generate alerts. The project is written in
Go42 and is available under the Apache 2 license. The source code is available on GitHub and is
a project managed by the Cloud Native Computing Foundation43 along with other projects such
as Kubernetes and Envoy.

Prometheus has been developed at SoundCloud since 2012, when the company realized that its
monitoring solutions (StatsD and Graphite) weren't right for their needs. Prometheus was
therefore designed to address these problems: having a multidimensional database, an easy-to-
use tool, a simple and scalable collection mechanism, and a powerful query language, all in one
tool. The source code of the project was released under a free license from the very beginning.

In May 2016, Prometheus was the second project incubated within the Cloud Native Computing
Foundation after Kubernetes. The tool is in use by many companies, including Digital Ocean,
Ericsson, CoreOS, Weaveworks, Red Hat and Google. Version 2 was released in November
2017. In August 2018, the Cloud Native Computing Foundation announced that Prometheus
could be used in production.

A typical Prometheus installation includes several building blocks:

�x Several agents (exporters) that usually run on the systems to be monitored and will expose
the monitoring metrics.

�x Prometheus for centralization and archiving of metrics.
�x Alertmanager44 that triggers the issuance of alerts based on rules.
�x Grafana45 for the return of metrics in the form of a dashboard.
�x PromQL is the query language used to build dashboards and create alerts.

41 Prometheus, https://prometheus.io/ , Last Access Jan. 2022

42 Go Language, https://go.dev, Last access Jan. 2022

43 Cloud Native Computing Foundation, https://www.cncf.io , Last Access Jan. 2022

44 Alertmanager, https://prometheus.io/docs/alerting/latest/alertmanager/ , Last Access Jan. 2022

45 Grafana, https://prometheus.io/docs/visualization/grafana/ , Last Access Jan. 2022

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 46

Prometheus data is stored in the form of metrics. Each metric has a name and a series of labels
in the form of a key value pair. Each metric can be selected based on these labels. These labels
include information about the source of the metric (agent, server address) as well as a variety of
application-specific information (HTTP code, request method), endpoints, etc. The ability to
specify an arbitrary list of labels and query them in real time explains why the Prometheus data
model is called multidimensional.

Prometheus stores data locally on disk. This technique optimizes quick archiving and retrieval.
Prometheus can also store metrics on remote servers (especially for long-term archiving).

Prometheus collects data in the form of a time series. Time series are actively retrieved - the
Prometheus server queries a list of data sources (the exporters) with a specific polling frequency.
These collection points serve as data sources for Prometheus. The server also has mechanisms
to automatically detect the resources to monitor.

Prometheus has its own query language PromQL (Prometheus Query Language)46. This language
allows users to select and aggregate the metrics stored in the database. It is particularly suited to
operations with a time series database by providing numerous specific features for manipulating
time (time offset, average, maximum, etc.). Prometheus supports four types of metrics:

�x Indicator (absolute temperature, amount of disk space consumed)
�x Counter (number of requests since the start of a program)
�x Histogram (sampling a number of requests in multiple containers to calculate quantiles)
�x Summary (relatively similar to the notion of histogram with additional notions).

The configuration of alerts is configured by Prometheus using a condition based on an expression
in PromQL format and a time duration that allows you to characterize the time required to trigger
an alert. When alerts are triggered, they are passed on to the Alertmanager. The latter is
responsible for carrying out a certain number of aggregation, deactivation and time-out operations
of these alerts before transmitting them by different means (email, Slack notification or SMS).

Prometheus is not designed to provide dashboard feedback although it does have a workaround
for doing so. It is a good idea to use a tool like Grafana even if this solution has the drawback of
making the installation of the monitoring system more complex.

Prometheus uses so-called white box surveillance. Applications are encouraged to expose their
internal metrics (using an exporter) so that Prometheus can collect them on a regular basis. In
case the application (or component) cannot do it directly (database, monitoring server), there are
many exporters or agents ready to use to fulfil this role. Some exporters also allow you to manage
communication with some monitoring tools (Graphite, StatsD, etc.) to simplify switching to
Prometheus during migration.

Prometheus focuses on platform availability and core operations. Metrics are typically archived
for a few weeks. For long-term storage, it is recommended to turn to more suitable storage
solutions. Prometheus' exporter metrics display format has been standardized with the name
OpenMetrics47 so that it can be reused elsewhere. Some products have adopted this format,
such as InfluxDB, Google Cloud Platform, and DataDog.

46 PromQL, https://prometheus.io/docs/prometheus/latest/querying/basics/ , Last Access Jan. 2022

47 OpenMetrics, https://openmetrics.io , Last Access Jan. 2022

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 47

4.3.1.1 Usage in ODIN

�3�U�R�P�H�W�K�H�X�V���L�Q���2�'�,�1���F�D�Q���E�H���X�V�H�G���I�R�U���q�0�R�Q�L�W�R�U�L�Q�J���V�\�V�W�H�P���S�H�U�I�R�U�P�D�Q�F�H�r���D�V���Z�H�O�O���D�V���q�0�R�Q�L�W�R�U�L�Q�J���R�I��
�5�8�&���S�H�U�I�R�U�P�D�Q�F�H���D�Q�G���.�3�,�V�r�����D�V���Z�H�O�O���D�V���W�K�H���E�D�V�L�V���I�R�U���W�K�H���R�S�W�L�R�Q�D�O���V�H�U�Y�L�F�H�V���I�R�U���P�R�Q�L�W�R�U�L�Q�J���V�K�D�U�L�Q�J��
with technical support, and Anonymous performance sharing.

One of the advantages of using this software is that the technologies proposed for other
components, presented in this deliverable and deliverable D4.5, are already aligned with
Prometheus.

4.3.1.2 Available Open-Source Projects

The open-source project of Prometheus monitoring system and time series database is available
on Github48.

4.3.2 ELKStack
Elasticsearch49 is a distributed, open-source search and analysis engine for all types of data,
including textual, numeric, geospatial, structured, and unstructured. It is based on Apache
Lucene50 and was first released in 2010 by Elasticsearch N.V. (now known as Elastic). Known for
its simple REST APIs, distributed nature, speed, and scalability, Elasticsearch is the core
component of Elastic Stack, an open-source toolset for capturing, enriching, archiving, analysing
and data visualization. Commonly referred to as the ELK Stack (after Elasticsearch, Logstash and
Kibana), Elastic Stack now includes a rich collection of supplements known as Beats for
submitting data to Elasticsearch.

In recent years the world of Elasticsearch has expanded considerably. Born as a NoSQL database
to support text search through the Apache Lucene index, the project saw the development of
other open-source products: LogStash51, Kibana52 and Beats53.

Logstash is a log aggregator that collects data from various input sources (apps, databases,
servers, etc.), performs various transformations and data clean up, and finally sends the resulting
data to various supported output destinations including Elasticsearch. Kibana, on the other hand,
is a visualization tool that works on top of Elasticsearch, giving users the ability to analyse and
visualize data. Finally, Beats are software packages (agents) that are installed on hosts to collect
different types of data to forward on the stack.

48 Prometheus GitHub project, https://github.com/prometheus/prometheus , Last Access Feb. 2022

49 ElasticSearch, https://www.elastic.co/ , Last Access Jan. 2022

50 Apache Lucene, https://lucene.apache.org , Last Access Jan. 2022

51 LogStash, https://www.elastic.co/logstash/ , Last Access Jan. 2022

52 Kibana, https://www.elastic.co/kibana/ , Last Access Jan. 2022

53 Beats, https://www.elastic.co/beats/ , Last Access Jan. 2022

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 48

All of these components are most commonly used together for monitoring, troubleshooting and
security of IT environments (although there are many other use cases for ELK Stack such as
business intelligence and web analytics). Beats and Logstash take care of data collection and
processing, Elasticsearch indexes and stores the data and Kibana provides a user interface to
query and view the data.

As previously mentioned, ELK stack represents an open-source solution for the management and
analysis of large amounts of data including logs. Monitoring modern applications and the IT
infrastructures on which they are deployed requires a log management and analysis solution that
will overcome the challenge of monitoring highly distributed, dynamic and noisy environments.
ELK Stack allows you to perform these operations by providing users with a powerful platform that
collects and processes data from multiple data sources and stores them in a centralized data
archive. In addition, it can scale with data growth as well as providing a set of tools for data
analysis.

In order to ensure high availability, high reliability and security of applications, ELK Stack rely on
the different types of data generated by the applications themselves and by the infrastructure that
hosts them. In this way, solutions can be studied to improve the software, the architecture and /
or promptly intervene in the event of a Deny Of Service (DOS).

Logs have always existed and so have the different tools available to analyse them. What has
changed, however, is the underlying architecture of the environments that generate these logs.
The architecture has evolved into microservices, containers (for example Docker, Kubernetes)
and orchestration infrastructures distributed on the cloud or in hybrid environments. Furthermore,
the volume of data generated by these environments is constantly growing which is a challenge
in itself. Centralized log management and analysis solutions such as ELK Stack, allow to have an
overview of the information captured and, consequently, ensure that the apps are reliable and
performing at all times.

ELK Stack log management and analytics solutions include the following key capabilities:

�x Aggregation: the ability to collect and send logs from multiple data sources
�x Processing: the ability to transform log messages into meaningful data for easier analysis
�x Storage: the ability to store data for extended periods of time to allow for monitoring, trend

analysis and security use cases
�x Analysis: the ability to dissect data by querying it and creating views and dashboards on it.

The various components of ELK Stack have been designed to interact with each other without
too many configurations. However, the way you design the stack can differ greatly depending on
your environment and use case. Elasticsearch, of course, is not only used for log analysis. Its
architecture can also be used for the analysis of other types of data, such as those deriving from
the Internet Of Things (IOT) or from e-commerce transactions.

In fact, thanks to LogStash it is possible to define custom transformers for any type of data.
Apache Lucene's text indexing capabilities allow you to create unstructured data search engines.
Finally, with the different visualization tools offered by Kibana you can create dashboards for
different analysis purposes. The management of accesses, user roles and workspaces ensure
the creation of environments oriented to the needs of the various professional figures of a
company who must analyse the data.

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 49

4.3.2.1 Usage in ODIN

�(�/�.�6�W�D�F�N�� �L�Q�� �2�'�,�1�� �F�D�Q�� �E�H�� �X�V�H�G�� �I�R�U�� �q�0�R�Q�L�W�R�U�L�Q�J�� �D�F�W�L�Y�L�W�L�H�V�� �D�Q�G�� �W�U�D�F�N�L�Q�J�� �R�I�� �V�H�U�Y�L�F�H�V�r���D�V�� �Z�H�O�O�� �D�V��
�q�0�R�Q�L�W�R�U�L�Q�J���R�I���5�8�&���S�H�U�I�R�U�P�D�Q�F�H���D�Q�G���.�3�,�V�r�����D�V���Z�H�O�O���D�V���S�D�U�W���R�I���W�K�H���R�S�W�L�R�Q�D�O���V�H�U�Y�L�F�H�V���I�R�U���P�R�Q�L�W�R�U�L�Q�J��
sharing with technical support.

4.3.2.2 Available Open-Source Projects

Elastic, however, recently changed its licensing scheme for Elasticsearch and Kibana, moving
away from the open-source Apache 2.0 license to the more restrictive Server-Side Public License
(SSPL) and Elastic License. The Open-Source Initiative has publicly stated that the SSPL is not
an open-source licence. For a true open-source alternative to the Elastic distribution,
organizations will need to choose the Open Distro for Elasticsearch54 �L�Q�V�W�H�D�G���R�I���R�Q�H���R�I���(�O�D�V�W�L�F�p�V��
offerings. The Open Distro for Elasticsearch will be renamed as the community managing the
project manages its own fork for the Elasticsearch and Kibana codebases.

4.4 Features Implemented in the First Version
�,�Q���W�K�H���I�L�U�V�W���Y�H�U�V�L�R�Q�����Z�H���H�[�S�H�F�W���W�R���F�R�Y�H�U���W�K�H���X�V�H���F�D�V�H���R�I���q�0�R�Q�L�W�R�U�L�Q�J���V�\�V�W�H�P���S�H�U�I�R�U�P�D�Q�F�H�r���Z�L�W�K���R�Q�H��
of the before mentioned technologies.

54 Open Distro for Elastic Search, https://opendistro.github.io/for-elasticsearch/, Last access Feb. 2022

Deliverable D4.2 �t Implementation of Local CPS-IoT RSM Features v1

Version 1.0 I 2022-05-20 I ODIN © 50

5 Conclusions and Next Steps
For the following period, the three main components described in this deliverable will undergo a
deeper study and research so that decisions regarding the technologies to use as well as the final
open-source projects to be implemented, are made and the initial tests can be carried out.

These decisions involve not just technological partners but also other stakeholders in the project,
not just the pilots, but also business leaders and the open innovation.

The decisions include:

�x Technology or technologies to be used for the Resource Descriptor.

�x Technology to be used as the Message Bus.

�x Technology to be used for Transport Services.

�x Technology to be used for Monitoring System Performance.

All this will be reported in deliverable D4.3 - Implementation of Local CPS-IoT RSM Features v2.

