** x
* *

7KLY SURMHFW KDV UHFHLYHG IXQGLQJ IURPUWYXHI . o
DQG LQQRYDWLRQ SURJUDPPH XQIGIH3B1J Ut UHHF

Wdin

D3.1 Operational framework

Deliverable No. D3.1 30/06/2021

Establishes the infrastructure, protocols, structures and operation:
for development and operation of the ODIN platform, to be used ir

WP35.

Dissemination

Work Package Platform integration, Privacy,

Work Package No. Nillz] Title Security and Trust + knowledge +
cognition

Description

1.0

Deliverable D3.1 t Operational framework \\\‘\S)dln

Authors

Neme and sumame __ Parnerrame | email |

llias Kalamaras CERTH kalamar@iti.gr

Dimitrios Giakoumis CERTH dgiakoum@iti.gr

Konstantinos Votis CERTH kvotis@iti.gr

Giuseppe Fico UPM gfico@lst.tfo.upm.es
Alejandro Medrano UPM amedrano@lst.tfo.upm.es
Eugenio Gaeta UPM eugenio.gaeta@Ist.tfo.upm.es
Alvaro Belmar UPM abelmar@Ist.tfo.upm.es
Ezequiel Simeoni UPM esimeoni@Ist.tfo.upm.es

Pilar Sala MYS psala@mysphera.com

Jesus Gago Centeno INETUM jesus.gago@inetum.world
Marta Millet ROB mmillet@robotnik.es

Ernesto ladanza UoWw ernesto.iadanza@warwick.ac.uk

History

Dae veson O

25/05/2021 0.1 Initial draft containing table of contents and first skeleton
content.

02/06/2021 0.2 First draft content.

14/06/2021 0.3 Added content in all sections.

16/06/2021 0.4 Added content in all sections.

16/06/2021 0.5 Integrated input from INETUM.

18/06/2021 0.6 Integrated input from UoW and UPMDGGUHVVHG S
comments and added further content.

21/06/2021 0.7 Added further content in all sections.

21/06/2021 0.8 Version ready for peer-review.

28/06/2021 0.9 Additional input for peer-review.

Version 1.0 | 2021-06-30 | ODIN ©

mailto:kalamar@iti.gr
mailto:dgiakoum@iti.gr
mailto:kvotis@iti.gr
mailto:gfico@lst.tfo.upm.es
mailto:amedrano@lst.tfo.upm.es
mailto:eugenio.gaeta@lst.tfo.upm.es
mailto:abelmar@lst.tfo.upm.es
mailto:esimeoni@lst.tfo.upm.es
mailto:psala@mysphera.com
mailto:jesus.gago@inetum.world
mailto:mmillet@robotnik.es
mailto:ernesto.iadanza@warwick.ac.uk

Deliverable D3.1 t Operational framework ‘\\X dln

28/06/2021 0.10 Integrated input from peer-review and addressed comments
from other partners.

29/06/2021 0.11 Minor corrections.

29/06/2021 0.12 Version ready for quality check.
30/06/2021 0.13 Addressed comments of quality check.
30/06/2021 1.0 Final version.

Keydata

Keywords DevOps, operational framework, continuous
development/integration

Lead Editor lias Kalamaras (CERTH)

Internal Reviewer(s) Marta Millet Pascual-Leone (ROB)
Pablo Lombillo Biosca (MYS)

Abstract

D3.1 Operational framework describes the software infrastructure used to suppocbntinuous
development and integration of software components developed in ODIN. The infrastture
involves source code versioning, build tools, component repositories, and automatic
deployment tools for installation and use at the pilot sites. The gbaf the infrastructure is to
create a continuous workflow from developer to end user, so that amew functionalities or bug
fixes are available to the end user as soon as possible and with minimum effort.

Statement of orginality

This deliverable contains original unpublished work except where clearly indicdt@therwise.
Acknowledgement of previously published material and of the work of others has beerade
through appropriate citation, quotation or both.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\S) dln

Table of contents

TABLE OF CONTENTSt et e e e et e e et e e et e s ma s e rm s eeaneeaa e eeaaeennn 4
LISTOFR TABLES ...ttt ettt e et e et e e e e e e e s e e s e e e ea e e aa e e ean e ennass 7
S I @ o € U] . 8
O |V I (@ 100 1 9
1.1 DELIVERABLE CONTEXT . it iieiiiiitttttiiaseeeeeseettttaassaeaeeeessstsnnasaeaasssssssannaaaaeaeessssnnnnnnns 10
1.2 DEVOPS OVERVIEW. ... cttttunietettuteeeettseassstaaesestaseesasaneassstanaesettaaeesasnaeeeesanaesesnnnens 11
2 SOURCE CODE MANAGEMENTciciiiiiei it eee e rme s e e s e e s e s e aa e e an e enaaes 14
2.1 SOURCE CODE VERSIONING.....utttttuuesttttuseesestaeasestneassssnsaesessnaesessnnaesesnnaessssnaassnns 14
2.2 SOURCE CODE VERSIONING TOOLS.....cccittttiuiieieeeeeeeeetiiiaaseeaeeesssstinaaaeeasssssssannaaaeeaees 14
2.2.1 SUBVEISION (SVN). .. e e e e e 15
2.2.2 MEICUIAL...ceiiiiie i e e e e e e e e e e e e e et a e 16
2 T €1 | SO SSRR 16
2.2. 4 COMPATISON. . .uuuii i e e ettt e e e e et ee e e e e e e e e et et a e e e e e e e e ettt s e e eeeeeaaatttaeaaaaes 18
2.3 OPENSOURCE......cutttuitieeeeteeetttiaa s e e eeee et et e et aaeeeesasttt e e e aeeeeesertttaaaaeeaaeesssttaaaaaaaaes 19
2.4 ODIN GUIDELINES ...ttt et eeteeetttiieateeeeeeeeeatt e e e aaeaessasttb e aaeasssssrttaaaaaaeasessstttaaaaaaaes 19
3 BUILDING SOFTWARE.ottt et e st e et e s et e e e e e et e s e e e ee e s eaanaeaeeenannes 23
3.1 BUILD AUTOMATION TOOLS...etttuuueieeeeeeeeettitiaaaeeeeeeeessttinaaaeeeesssssrttaaeesessssrinaaaeaeess 23
70 S R |V = 1P OO PPN SUPPPPPRPPPR 23
B.1.2 CIMAKE ettt e e e e e et e e e e e e e e e rb e aaaaaarare 24
TR O T O\ 1 (] ¢ PR SPPOPRSPPPIR 26
G F0 I |V = N T o P 27
B L D PP e 29
70 L T V1 = |V PO OO PSR UPPPPPRPPPR 30
T8 O A €] - To | = TSP SPPOPR PPN 31
BiLi8 BAZELauuniii e aaan 32
3.2 CONTAINERIZATION ... ieeeieietittee e e e e e e e eeettt e e e e e eaese e aasta e e eeeeesassetaaaaaaeaaeessstrannaaaeanees 34
3.3 ODIN GUIDELINES ..t it eeeeeeeettttiee e e e e e e e e ettt e s e e e eaeee e aasta e s eaeeesassstaaaaaaeaaesesstrannaaaaeaaes 36
4 TESTING SOFTWARE........cociiiiiiii it et e st e e et s et e e e e e e e s ee s s em s eaaneeanneennnsaes 38
N R U N s 1S = TSP 38
4.2 INTEGRATION TEST S it iiiiiittittiaseeeeeeeeettttaaaaeeaeseeaatta s aaeeesestttaaaaaeeaeeesstrnnaaaaeaeees 40
4.3 TEST SERVER INFRASTRUCTURE......cccitttttitiieieeeeeeeiettitiaeseeeeeseesttaaaasaaessssssstannaaaaaaes 41
A4 ODIN GUIDELINES ... iieeeteeetttttaaeeeeeeeeeetttaaaaeeaeeeesatta e e s eeeeessssttaa e aaaeaeeeessttanaaaaaaaes 42
5 SOFTWARE RHEEASEccou ittt et e e ee s s eea e e et e e eaneees 44
5.1 SOFTWARE RELEASE VERSIONS. . ..t iieeiiiiittitiieieeeeeeeettttiaseaeeseessssttaaaaaeassssssrtnnaaaeaaes 44
5.2 TAGGING VERSIONS. ..uuui it eeeiieetttiiee s e e e e e e e eett e e e e e eeeeeetttb e e aeeasssssata s aaaesaessssrbanaaaaaaes 44
5.3 DOCKER REGISTRY . tttuutiieettttttttuiaseeeasessstttnaaaaesessestttaeessessrttaaeeseesrrraaanss 45
5.4 ODIN GUIDELINES ...ttuutteeetieeettttiaaseeeeeeeeettt e s e e aeaeesasstaa e s aeasssssstta s aaaeaaeesssttanaaaaaaes 46

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\S) dln

6 DEPLOYMENTiiieiiii it rrrrae s resrer s s s e e s e e s s s s e rn s s s e e nsan s eenrnsasasensnasssensnnnssennnnn 48
6.1 SERVICE COMPOSITION....iittttttitttttitttteteeeeatttettatattttttttaaetteatetttettetttttttttarrrttrrrrrrrrr 48
6.2 TOOLS FOR SERVICE COMPOSITIONetttitttiiteeteesseseeeeeteeeestteseeaseeaaeseeeeeaeeeeeerrrrrerereee 49

6.2.1 DOCKEI~COMIPOSE. ... etttetteeeettteeeeeeeeseeeeeeseeeeeeeeeeee ettt nnnnnes 49
L B o o] (=T =37 1 o o 50
G2 B (AU | o =11 01 (=SSP 51
6.2.4 Amazon EC2 Container Service (ECS)........oouuiiiiiiiieeieeeeiiee e 52
6.2.5 APaChe MESOS.... ..o e 53
T2 G I L] 1 1= To PPN 53
L G 0] 11 o = 11T 1S PSSR 53
5.3 ODIN GUIDELINESuuteeeetteetttta e e e e e e ettt e e e e e e e e eeeebb s e e e e e e eetebb e e e eeaaeeesbbbnnaaaeeaaas 54

7 OPERATION MONITGRNG AND FEEDBACK COLLECTION......cccveveinieerineeeee e eeeennns 55

7.1 GRAPHICALUSERINTERFACE]GUIS) FOR MANAGING DEPLOYMENTS.....cccvvviiiiriireenennn 55
A% N R .= T 111 o | SRR 56
7.1.2 Kubernetes dashDOAIU.uuuuuuuuiiiiiiiiiiiieiieiireeerenereerreeeereeeree 56
A% T © 01T o 1] o1 1 S PSSR 57
A S = o 4 = 1| 1= 58
T.1.5 COMP@IISON. ..ttt 59

7.2 OPERATION MONITORINGKPIS ..ot 59

7.3 COLLECTING FEEDBACK FROM PILOT SITES ..iiiitttiiiiiiiiiieeeeieeeeeeiseeeeeaseeeeaeseeseeaeeseeaeaaens 61
7.3. 1 FAVEO HEIPAESK ettt 62
AR T A o -V g o =] 62
7.3.3 JIr@ SEIVICE DESK.. oot 63
A T I 0 (o [ORI 64
S S T U AV T P 65
AR T T o] o o TN I 1= SRR 66
T.3.7 COMP@IISON. ...ttt 67

7.4 ODINGUIDELINEScittitttie ettt ettt ettt e ettt et ettt e e e e raaeaaaaaaeees 68

8 PIPELINE ORCHESTRATION.......cuiiiitieisieiere s eesranssesresssssrrn s s esrrs s s sssesnnsssnsnsnssensnns 69

8.1 TOOLS FORCI/CD ..ccceiiieeee e 69
S 0 0 N 1T 1] 69
S0 0 O (o] [0 71
B.1.3 TEAMCIY. . ceeiiiiii i e e e e e e e e e e e e e e e e e aar e e 72
S TR S - T 0 0 o To Lo N 73
S0 0T 1 o 74
ST T o] 4 o = {0 o 1 75

S22 © T 1 |\ U] = PP 76

9 HORIZONTAL SERVICES.......ccotueiiieieiinieirine s srsrasssssrenss s sess s s sssrsssssssesassssensnsnssensnns 77
9.1 SECURITY MECHANISMS FOBREVOPSccctiiiiiiieiieie ettt a e e aaeaees 77

9.1.1 Single Sign On and Authorisation service: Keycloak............ccccooevviiiiiiiiiiinnennnn, 78

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\S) dln

9.1.2 Public Key Infrastructure: SKS keyserver & Docker notary server.................... 78
9.1.3 Transport Layer Security: X509 certification..............ccccevvvviiiiiiieeriiiiiiiciee e, 79
9.1.4 ODIN gUIAEIINES.... .ot e e e e e e 79

0.2 DOCUMENTATION ...ttt e eeetteetttta e e e e e e eeeatbaa e e e e aeeeeeetba e e e aaeeeatbbn e e e eeaaeeesrbbanaaaeeaaas 80
9.2.1 ODIN KNOWIEAQE BaASE......uiii et 81
9.2.2 Component dOCUMENTALION.........uuuueiririeieiiirieieereeeieeaeeeeseeeeeeeeeeseeeneeneeeneneeenennee 81

0.3 DEVOPS HOME PAGEiitttititiietete e e et ettt et e e e e et e et e e e et e e e e e e e e et e et e et tttteettteataeatatatateteaaaeeees 82
9.4 DEVOPS QUALITY ASSURANCE.......cctttttttttttittettattattatttttattttttttttttttttettteetatttrtarrrrn 83
10 CONCLUSION....cciuieiiieietie i srrrs s serra s e e rnsss s s rrs s s eerr s s s aernsasassensasssnessnnssesnnnnnnsennns 87
APPENDIX A DEVOPS SERVIE LIST.....cccuoiiiiieiieiririe s sesrenessssrnsssssessn s essn s sssnnnnenes 88
APPENDIX B ACRONYM GLOSSARY.....cccueiiimieruisirirrnssrrrnsssssrnssssssensssssssnnssesssnnnnnanes 89

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\S) dln

List of tables

TABLE 1: DELIVERABLE CONTET. 1ttttuttttutttuaettusettusaestneestnassnneessnsessnassseesssassnesesnneennesneennn 10
TABLE 2: COMPARISON OF SOURCE CODE VERSIONING TOOLS.....uiitvuieiiiieeiieeineeetneeeennesanneenens 19
TABLE 3: TEST ENVIRONMENT CLOUD DATACENTER FEATURES......ctttuiiiiiieeiieeiieeeineeeaeeeaneeeens 42
TABLE 4: COMPARISON OF SERVICE COMPOSITION TOOLS . .ctuuiiituieeiiiereteeeieerenneeenneesnnaesaneenens 54
TABLES: COMPARISON OF DEPLOYMENT MANAGEMENBUIS. ..o, 59
TABLE 6: COMPARISON OFHELP DESK TOOLS...uutituiiiteeetiiertieeeteeetnneeeneeseneesaneesnnaessnnassnneennns 67
TABLE 7: COMPARISON OFCI/CD PIPELINE ORCHESTRATION TOOLS.....cuuuieiiiiiieeeeeiieeeeeeineeeenenns 76
TABLE8: ODIN DEVOPS USER ROLES .. .cttuuitituieitieeateeetsestuaesatnasstnaesnneestnaasanaesnaeeenaasanneennns 80
TABLE9: QUALITY ASSURANCE OBJECTIVES FABEVOPS.ciiiiiiiieeiieee et e et e et e e eaa e e e eeens 85
TABLE 10: ODIN DEVOPS SERVICE LIST..ttuuittuuieituteeeteeetseeaueestnaastneesneestnaassnneesnnaessnaassnneeenns 88

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\&S) dln

List of figures

FIGUREL: THE GENERALDEVOPS WORKFLOW SOURCE DEVOPEDIORG. ...ccvvuieviiiinieereninneeseannnnns 11
FIGUREZ2: HIGH-LEVEL OVERVIEW OF THCI/CD WORKFLOW TO BE USED IDDIN.........ccccoeevvvnnnnen. 12
FIGURE3: DETAILED OVERVIEW OF THEDIN DEVOPS WORKFLOW.uiivvieeeieeeiiieeaneeeineeaneeeens 13
FIGURE4: EXAMPLE OF AGITFLOW WORKFLOW.uutitiieiiieeeteeeeineeeteesannesaneeetnseeannsessneeanneeenns 17
FIGURES: SOFTWARE TESTING LEMES. ...ivuuiiiiiieetieeeieeeeeest e e s e e et s e st esanseeaneeanneessnaeeanneeenns 38
FIGUREG: MONOLITHIC VS MICRO-SERVICE APPLICATIONS......uttttueretneeeeineeeteeetnseeaneeennaesaneeeens 48
FIGURE7: SCREENSHOT OF THESWARMPITGUL ...cuniiiici e 56
FIGURE8: SCREENSHOT OF THEKUBERNETES DASHBOARIBUL.covviiiiiiiiii e, 57
FIGURE9: SCREENSHOT OF THEOPENSHIFTGUL....cciiiiiii e 58
FIGURE10: SCREENSHOT OF THEPORTAINERGUL.....cciiiiiii e e e e 59
FIGURE11: SCREENSHOT OF THEEAVEOHELPDESKGUI......uiiiiiiiiiiiiiiie e 62
FIGURE12: SCREENSHOT OF THEHANDESKGUIL. ...cciiiiiii ittt 63
FIGURE13: SCREENSHOT OF THEIIRASERVICEDESKGUI......ccciviiiiiiiiiiicccei e 64
FIGURE14: SCREENSHOT OF THEHRUDESKGUIL.......iiiiiiiiicie et 65
FIGUREL5: SCREENSHOT OF THEJVDESKGUL......uuiiiiiiiii et 66
FIGURE16: SCREENSHOT OF THEZOHO DESKGULL......uiiiiiiiiiiiiiiiis e 67
FIGUREL7: SCREENSHOT OF THETEAMCITY CI/CD TOOL....ctvtuuiiieeeiiieeiiiie e e e e e et s e e e e e aannes 73
FIGUREL8: SCREENSHOT OF THIBAMBOO CI/CD TOOL. ...ccvvtiiiiieeeeiieeiiiiiee s e e e e e eevtviie e e e e e e e eeeanens 74

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\S) dln

1 Introduction

This deliverable describes 2', 1 p \6perational framework for continuous development,
integration and delivery of software components, collectively calleDevOps. The document
covers a continuous workflow from developer to end-user, including soce code management

and version control, build automation tools, containerization tools, softwareding frameworks,

component release guidelines, component deployment, deployment managemerds well as

the tools that will be used to automate the execution of the steps in this workflow.

The deliverable provides a description of the infrastructure that will be ingmented in ODIN
regarding DevOps, including version control servers, Docker registries, deployme
management servers, orchestration services and security provisioning. It provides astiption
of popular alternatives for the tools in each step, from which the onds be used in ODIN are
selected. It also provides information about best practices for the different steps facilitate
developers and ensure high-quality software production.

The deliverable is meant to provide guidelines to the technical members of the ODIN consortium
UHJDUGLQJ WKH VHUYLFHV SURYLGHG E\ 2',1pV '"HX¥E28¥mLQIUDVW
during development and deployment. Sections 2 to 9 cover the main steps in thBevOps

workflow. Each section is structured in the same high-level manner:

X An introduction to the type of activities involved in the step to be described
X A presentation of the available tools to facilitate these activities

x $ VHFWLRQ QDPHG q2',1 JXLGHOLQHVr GHVFULELQJ WKH W
used and followed within ODIN regarding the corresponding activities, as wels the
infrastructure that will be setup to manage them.

A reader wishing to find guidance about how each step should be addressesithin ODIN may
VWDUW E\ FRQVXOWLQJ WKHVH g2',1 JXLGHOLQHVr VMFRVLRQV
references to the other parts of the deliverable for details, whereepessary. A summary of the

whole ODIN DevOps infrastructure, with links to the appropriate guidelines is providedif.

This deliverable will be shared with the consortium and will establish thevOps guidelines that

ZLOO EH PDLQWDLQHG GXULQJ WKH SURMHRWpR | ON KH. W LGPHHO L7¥<HHW
However, the guidelines contained in this version will be transferred the project Wiki (once it

is released, as part of the activities of T3.4). The version uploaded the Wiki will act as a

running document shared among the consortium that will be updated whemer changes occur.

Such changes may include changes in DevOps domain names, or switching to a different tool

for a particular step if problems arise in practice. In such cases, any miitations will be

reported in the Wiki and disseminated to the technical members of the consortiuthrough

appropriate communication channels, such as project meetings and mailing lists.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\\S)dln

1.1 Deliverable context

Table 1 provides an overview of the context of the current deliverable, in agibn to the project
objectives and foreseen results.

Table 1: Deliverable context.

PROJECT ITEM RELATION&HIP

Objectives

Exploitable results

Workplan

Milestones

Deliverables

Risks

7KH GHOLYHUDEOH LV UHOHYDQW WR 2',1p
defines the basis for the development and deployment of the
components that comprise the foreseen open and secure decentralizec
ODIN platform.

There is no specific contribution to any exploitable results. Instead, the
infrastructure presented hereby will be used as the basis for the
development of potentially exploitable components.

D3.1 is attributed to the tasks of WP3Platform integration, Privacy,
Security and Trust + knowledge + cognitionSpecifically, the task
involved in the preparation of this deliverable is T3.1, DevOps and
infrastructure.

D3.1 is a key deliverable of the PREPARATION (MS1) and
IMPLEMENTATION (MS3) phases of the project.

Privacy Security and Regarding security

D3.4 1D36 Trust report mechanisms
. Regarding component
D3.7 tD3.9 Technical S_upport Plan documentation and feedback
and Operations .
collection.
Regarding the application of
D3.10 tD3.12 ODIN platform DevOps in the development
of the ODIN platform.
D72 tD7.7 KPI Evolution Report (I Regarding the collection of
’ ' to IX) KPls about DevOps activities.
Pilot Studies Evaluation Regarding component
D7.9 Results and evaluation results of
sustainability unit/integration testing.

The guidelines provided in this deliverable can help in minimizing the
following risks identified in the Grant Agreement:

X Technologies not available in time

X Technical problems during component/module development

X Complexity of unification procedure
The described DevOps guidelines provide a continuous
development/integration infrastructure and best practices that can assis
in delivering components in time, reducing technical problems in
component development and deployment, and reducing complexity of
deployment follow-up through a continuous delivery pipeline.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework ‘\\X dln

1.2 DevOps overview

DevOps is a term to describe a culture where the fields of software dewgiment and operation
are brought closer together, facilitating and accelerating the release of newrictionalities'.

DevOps involves two key ideas:

X Adopting practices for developing high-quality, production-ready and eastp maintain
software, such as naming conventions for easy collaboration, unit testing for glly
spotting bugs, comprehensive documentation, etc.

X Making use of automation tools for automatic building, distributing and deplogn
software, so that new functionalities and changes are propagated as so@s possible to
the end users for operation.

T

Dev Ops

Figure 1: The general DevOps workflow. Source devopedia.org.
The steps involved in a continuous integration/continuous delivery (CI/CD) wdéldw are mainly
the following, as shown in Figure 2:

X Source code management: Structuring and documenting source code, managin
versions, collaborating, etc.

X Building automation: Building source code into executable applications.

x Testing: Writing and executing unit and integration tests to check the proper functiogin
of the application.

X Release: Making the application available to end-users.

! Devopedia, https://devopedia.org/devops Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

https://devopedia.org/devops

Deliverable D3.1 t Operational framework \\\\S)dln

x Deployment: Installing the application to the target execution environment, e.gat a
pilot site.

x Execution / monitoring: Running the application at the target environment and colléay
feedback about its use and malfunctions

x Orchestration: Automating the whole process from developer to target ecution

environment.
(g) Developer

-
Source code management
=
é ¥
Buildin c
g < g . S
— =]
g : ©
3 Testing *%‘
¥ <
. 2
------ Release - 9 |--
O 8
£ v Q
S~
o O
£ Deployment
>
o ¥
o . -
8 Execution / monitoring

}

Rad -

Figure 2: High-level overview of the CI/CD workflow to be used in ODIN.

These steps create a continuous workflow from the developer to the targetxecution
environment. The orchestration mechanisms are responsible for automating this prabge, so
that changes in the source code made by the developer are automaticalfyropagated through
all steps of the workflow and end up in a new software version running at the pilot site.

In a more detailed view, in ODIN, each of these steps will be handldxy a particular DevOps
component, described in the following sections of this deliverable. An omeew of the specific
components to handle the different parts can be seen in Figure 3. Qmme end, the developer is
responsible for providing the source code, along with configuration fileseeded for properly
building, containerizing and deploying the built application. The source cedand the
configuration files are managed by a GitLab source code management servesplit into two
parts: one handling the source code and building instructions and another handling mponent
deployment. As a next step, the source code is built into executable appditons and
containerized into Docker images, ready to be installed in any execution ersiment (see
Section 3.1.7 for detaills) 7KH FUHDWHG 'RFNHU LPDJHV DUH UHOHDVHG W
at which point the development phase is complete.

During the deployment phase, the instructions provided by the developer aresed to compose
the available Docker images into complete applications that are started ithe environment of
the pilot site. The composition process and the monitoring of the running serveare managed
through an appropriate dashboard.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\&S) dln

The orchestration and automation of the whole workflow from developer flot site is managed
by the DevOps administrator, with the use of Jenkins orchestration softwardhe DevOps
administrator provides a set of Jenkins instruction files, specifying the series oéps needed to
UXQ HDFK WLPH D FRPSRQHQWpPV VRXUFH Th& &&hkins VhsPuothH UH G E\

files are managed in a sepdJ DWH SDUW RI 2',1pV *LW/DE 7KH LQVWUXFW.L
Jenkins server, automating the whole process.

DevOps Jenkins
administrator i server
H
m
A
REITRN

Unit / integration tests Er

Jenkinsfile lenkinsfile

E Jenkinsfile
GitLab

LN
PR
PP R e
Testing [<¢ -7 SN, TTmeeeeees -
\ ‘ | N -
P i Seeaa
-7 ’ e
- | .~
! .

- ' A & ~
Source code . Source code 1 Docker image \" Docker image(s) \ Application
i W -
. —=
— = ﬁ’ﬂ - S@ >
Source code Dock] Docker- Execution
Developer GitLab S compose environment
y <>) &
Docker i ox
Dockerfile Dockerfile registry

N
Docker-compose file

Docker
compose
Gitlab

Docker-compose Dashboard
file

Figure 3 Detailed overview of the ODIN DevOps workflow.

In the following sections, each step of this procedure is described in detafach section covers
an overview of the activities taking place at each step, the available t@oto accomplish these
activities, and the way each step will be handled in ODIN, providing thus a set gtfiidelines for
developers and maintainers to follow.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework ‘\\\-— dln

2 Source code management

The starting point for the development lifecycle of a software compent is the source code
written by the developer. This section describes the conventions to be used in ODfbr source
code organization, as well as the tools that will be used for source coddgorage, management,
versioning and collaborative authoring.

2.1 Source code versioning

Source code versioning tools facilitate keeping track of changes in the ace code during the
course of development. They relieve the developer from the need to keemtkups of different
versions of a project as it is being developed, as new functionality is bgi added and as bugs
are fixed. Whenever a particular change has been made to address an iss, the code can be
committed to the versioning tool, which keeps track of all previous commits. If theew change
is found to be problematic, versioning tools allow the developer to roll blato previous versions,
bringing the whole project to an earlier state, so that they can bring thepalication to a working
state and discover what went wrong. Versioning can be applied not ontp source code, but
any type of file, e.g., documents, configuration files, etc., whener one needs to keep track of
the project versions. Source code versioning tools are the standard way to kedgack of source
code versions in production software.

The overall manner in which versioning tools work is the following. Theveloper startstracking

a particular directory, e.g., the root directory of a new project. Thaleveloper can make
changes in the directory, e.g., add/modify/delete files. At any point duringhe project

development, the developer can choose tacommit the changes to the versioning tool, which
stores the current state of the directory and can tell what changed since the previougssion.

The complete history of commits is maintained by the versioning tool. Whenever the déger

wishes to roll back to a previous version, they camheckout a previous commit, which brings
the whole directory to the state it was at that commit, so that the deloper can examine its
contents as they were at that point.

Apart from tracking the history of changes, versioning tools also provide two other ajor
functionalities:

X Branching, i.e., creating different paths of development starting from the same oamit,
which can later be merged if needed. This is e.g. used to maintain raaster branch of
the stable version of a piece of software, while experimental branchese initiated from
different points in the master path, in order to develop and test new futionality. Once
the new functionality is finished, the experimental branch can be merged with the master
branch to create a new stable versia.

X Pushing to a remote repository i.e., uploading the whole tracked history to an online
repository. On the one hand, this is used to create a backup of the whole gject history
in a remote location. On the other hand, this is used as a means for collatation among
several developers. Different developers can work in different parts afproject, pushing
their changes in the common project repository.

2.2 Source code versionng tools

There are several tools that provide source code versioning functionigs. Versioning tools
follow two general paradigms: centralized and distributed version controlln centralized
systems, the source code and its history are stored in a central server, thwieach developer
communicating with the server in order to get the latest version and commit chagmg. In

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework \\\\S) dln

distributed systems, each developer maintains a complete copy of all se code and its
history. Changes are committed locally, and they can be pushed to remote repitories, for
storage and sharing with others. Both paradigms have their advantages andisadvantages.
Centralized systems make it easier to manage a project, but are time consumgi since it
requires a constant connection with the server. Distributed systems are fast but manake it
difficult to coordinate work of many developers. Early version contradystems, such as
Subversion, followed the centralized paradigm. However, the advantages of tibuted
systems, such as Git, have prevailed over the years, and they are those thateamostly in use
today. Here we briefly review some characteristic and widely used version control systems.

2.2.1 Subversion (SVN)

Apache Subversiori, or SVN, is a widely used centralized version control system. Centradit
means that the whole repository is stored in a central SVN sever, and each dgoper can
contribute to the repository by committing changes to specific parts. One of the main
advantages of a centralized version control systens the ease of managing the repository, as
there is a single point where all code is gathered, and the administrator can hawhe full
overview. Another advantage is that collaborating developers can each have averview of all
WKH RWKHU GHYHORSHUVp ZRUN

Disadvantages include the need to be connected to the server in order toommit changes,
which makes it difficult to work in case of server failure. Committing changes to tlserver may
also induce latencies in the development workflow, as uploading largele may be time-
consuming. These problems are reduced in distributed version control systems, sincemmits
are made locally and may only be pushed to the repository after severahanges have been
made. Another drawback of SVN is the fact that creating new branches is anxgensive
procedure, requiring several file copies, discouraging developers from follawg branching-
based workflows.

Subversion offers a command line interface with commands for committing and pushing code
and managing repositories. GUI tools can also be used as front-ends to tl&V/N system, such
as TortoiseSVN and RapidSVN, as well as add-ons and extensions to popular IDEs and code
editors.

2 Apache Subversion,https://subversion.apache.org/Last access June 2021.

3 TortoiseSVN https://tortoisesvn.net/Last access June 2021.

4 RapidSVN,https://rapidsvn.org/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

https://subversion.apache.org/
https://tortoisesvn.net/
https://rapidsvn.org/

Deliverable D3.1 t Operational framework \\\\S) dln

2.2.2 Mercurial

MercuriaF is a distributed source code management system that aims at fast management of

large projects. Distributed means that local copies of the complete repositoriesre stored in

HDFK GHYHORSHUpV PDFKLQH VR WKDW\DOQ G ISX@ KHG DVURH WIKUHV
repositories when needed.

The fast tracking of source code with local commits and the ability to comitnchanges even
without an Intenet connection are significant advantages of Mercurial ove8VN, which is a
centralized system. Mercurial also allows to extend its functionalities thugh extensions. These
extensions may e.g. provide access control mechanisms, usage statisticsptifying developers
through e-mails, etc. However, the branching system of Mercurial is still nquite easy to use
making it a bit hard for developers to securely manage branches.

Mercurial offers a simple set of commands to use, and is thus easy for new users &ain.
Graphical user interfaces are also available from Mercurial, such as Tortoise®{@nd it has also
been integrated in popular IDEs and editors, such as Eclipse, NetBeans, Visual Stydtmacs
and Vim.

2.2.3 Git

Git" is an open-source versioning system and is one of the most popular versioning systems. It is
a distributed version control system, similar to Mercurial, meaning that eadaeveloper working
on a project maintains a copy of the whole project repository, thus reducirtfe risk of failure. At
each commit, Git stores a snapshot of the directory structure at the time of the conitni.e.,
copies the current versions of all files, apart from files which haveot changed, for which only a
link to the previous version is stored. Git achieves high speeds in versioning, sinck @ommits
are made locally, and only pushes the changes to a remote repositorypon request by the
developer. Git also focuses on easy branching, since a new branch does not creacopies of
any files, just creates pointers to existing snapshots. This allows ddepers to create and
merge branches often, encouraging experimentation.

Git offers a rich command line interface, with commands to track files, commit changesush to
remote repositories, manage repositories, checkout previous versions, create anchanage
branches, etc. Graphical User Interfaces (GUIs) are also available, such as TaoigeGit and Git
Extensions, which allow a visual management of repositories. There are also several extens

5 Mercurial, https://www.mercurial-scm.org/Last access June 2021.

5 TortoiseHG, https://tortoisehg.bitbucket.io/Last access June 2021.

7 Git, https://git-scm.com/ Last access June 2021.

8 TortoiseGit, https://tortoisegit.org/ Last access June 2021.

9 Git Extensions https://gitextensions.github.io/lLast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

https://www.mercurial-scm.org/
https://tortoisehg.bitbucket.io/
https://git-scm.com/
https://tortoisegit.org/
https://gitextensions.github.io/

Deliverable D3.1 t Operational framework

to popular editors and Integrated Development Environments (IDEs), such as Visual Stud
Code, Eclipse, Vim, etc. for managing repositories directly from within the IDE.

The advantageous characteristics of Git and its popularity have led to the design of
development workflows based on its versatile branching scheme, as well as tioe creation of
widely used online Git repositories. These are briefly summarized below.

2.2.3.1 GitFlow

GitFlow! is a development flow, conceived by Vincent Driessen, which describes a very pise
branching model built around the concept of software release. This flowdesigned to make the
most out of the potential of the Git versioning software, but conceptual affingiecan also be
useful for managing the work with other software dedicated to the same functionality.

The flow described in GitFlow is aimed at maintaining a clean implementation histowhere a
release communicates to all users the presence of a new version tife product, defined bya
specific changelog consisting of new features and fixes. An example of GitFlow workflow is
shown in Figure 4.

Figure 4: Example of a GitFlow workflow.

GitFlow allows to:

10 GitFlow, https://datasift.github.io/gitflow/IntroducingGitFlow.htmiLast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

https://datasift.github.io/gitflow/IntroducingGitFlow.html

Deliverable D3.1 t Operational framework

x Develop in parallel: new developments are organized in feature brancheand are
merged into the main code only when the team deems it ready for release. Thalows
the developers to change tasks without problems.

X Increase collaboration: feature branches allow multiple developers to work on a single
feature, as it is like a sandbox and all developments are carried out so thatistbrought
into production. This also allows one to verify the work done by individual deopérs on
a feature.

X Have a release staging area: new developments are merged into aedelop branch,
which effectively represents a staging area for all developments that havmt yet been
released. This means that when a release occurs, the latter has all the devphoents in
the develop branch inside.

Support for emergency fixes: there is support for hotfix branches which are nothingome than
branches of a release. In this way, the merge will take place directly the release branch,
allowing fast fixes that should also be merged in the development branch.

2.2.3.2 Online Git repositories

Popular online repositories for Git projects include GitHdband Bitbucket?. They can both be
used to setup remote repositories for projects and link them to local Giepositories, so that
developers can push to these online repositories. Online Git repositories allow tHessemination
of source code to the community, so that other developers can use and mddiit. They also
facilitate collaboration among teams of developers. Both GitHub and Bitbuckprovide public or
private repositories, and they provide different storage capacity and functionédis according to
their pricing plans.

An alternative to using public repositories such as the above is for dewepler teams to setup
their own internal Git repository at a dedicated server. GitLabis a popular choice for such a
scenario. It provides the infrastructure for hosting a Git repository where teams can pusfeir
code. GitLab can be configured for the needs of a particular team, syprting any number of
users and controlling the available storage space. It also provides B@®ps functionalities for
automating testing and building steps upon pushing new versions.

2.2.4 Comparison

The characteristics of the source code versioning tools presented in the previous @ens are
summarized and compared in Table 2. In ODIN, Git is selected to be usedrfeource code
management. The key characteristics for this decision are its popularity among the rcgortium

11 GitHub, https://github.com/ Last access June 2021.
12 Bitbucket, https://bitbucket.org/product/ Last access June 2021.

13 GitLab, https://about.qgitlab.com/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

members, its high speed of operation, its superior branching mechanism facilitatifgranch-
based development workflows, the availability of several popular onlinmepositories (GitHub,
Bitbucket, GitLab) and its wide support community.

Table 2: Comparison of source code versioning tools.

Subversion Mercurial Git ‘
Type Centralized Distributed Distributed
Speed Low High High
Branching Expensive Expensive Cheap
Integrationin IDEs 9 9 9
Free 9 9 9

2.3 Open Source

At the current stage of the project, it is not yet decided if the developed $wvare will be
released, partly or as a whole, open source. This decision will beade during the course of the
project, and in coordination with the exploitation activities of WP9.

Until this decision is made, all source code, configuration, documentation and bug repdiles
will be kept private within the consortium. Content will be freely accessed by the méers of the
consortium or necessary third parties, such as open callers. However, the codshould be
maintained in such a manner that it is ready for migration to an open source public reptory, if
this is decided. Details about the type of access to the source code witle also reported in

platform deliverables (D3.10, D3.11, D3.12), as well as exploitation delivegles (D9.2, D9.3,
D9.4).

2.4 ODIN guidelines

In ODIN, source code management will be handled usingsit and a GitLab repository.
Developers are free to choose the programming language and the delgment environment to
develop their components. However, they should follow the following geiihes regarding their
Git repository. This will ensure consistency across components, ease of use and maintenanaf
the source code and ease of maintenance of all repositories, e.gn icase of migration to a
different host.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

x

Developers should use Git' for source code versioning.

7TKHUH VKRXOG EH RQH *LW UHSRVLWRU\ SHU &®RHEBRQHQW
piece of software performing a distinct set of functionalities, e.g.,\@eb application, a Al

module, a set of analytics web services, a robot navigation system. The repository

should be as self-contained as possible, so that a developer can clone or fork it and start
working with it directly. A repository can be organized into sub-modules, they are
conceptually closely related to each other and to the overall functionalityf ahe
component. In this case, the developers can use the git-submodufefeature, to manage

these sub-modules.

The Git repositories should be pushed to the ODIN GitLab server, hosted at:

https://qitlab.odin-smarthospitals.eu

In case the component needs building for it to execute (e.g., a compilegxecutable or a
web application distribution), the developer is encouraged to use one dhe build
automation tools described in Section 3.1, depending on the development environment
and language used. This will facilitate dependency management and use by othe
developers. In this case, the developer should include in the repository anymfiguration
files needed by the build automation tool, e.g., Makefiles, package.jsoreB, etc. See
Section 3.1 for more information.

The developers are encouraged to include unit and integration tests in the sice code,
in a distinctsub-directory within the repository.

Each repository should contain a file namedockerfile , which describes how to build
the component into a Docker image (see Section 3.1.7 for details about Dockerpetails
about how this Dackerfile should be structured are provided in Section 3.3. If more
than one Dockerfile s are needed to build the component, this could be an indication
that the component needs to be split into more than one components (see the secd
bullet point above). TheDockerfile may be generated by build automation tools (see
Section 3.1), in which case this should be explained in thREADME.Miide (see below).

Each repository should contain a file hamedREADME.Mpreferably all capitalized),
containing information about the following:

0 Getting stated / Use: A shortdescripLRQ RI WKH FRPSRQHQWpPV IXQFWI

short guide for end users to start using the module.

14 Git, https://git-scm.com/ Last access June 2021.

15 Git-submodule, https://git-scm.com/book/en/v2/Git-Tools-Submodules ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

C

Deliverable D3.1 t Operational framework

(0]

How to build, Install, deploy: A short guide for developers, maintainers and
deployers.

Testing (optional): A short guide for developers and maintainers on how tun
the developed unit or integration tests.

Contributing (optional): A short guide for developers and maintainers on how t
contribute to the development of the component, including the code conventions
used, the code incorporation process (e.g., pull requests the different Git
branches present, etc.

Credits / Getting help (optional): Contact information of the
developers/contributors to the component, so that users or other developers can
address questions/issues/problems. In case issue and bug tracking is handled
by issue tracking services, this part should include references to these services.

Licence: A short summary of the licence applying to the module.

x Each repository should contain a file named.ICENCE.TXT(preferably all capitalized),
containing the licence declaration under which the component is distributed (e.§PL,
MIT, etc.). A short version of this licence should be included IREADME.MD

X Each repository should contain a file namedNOTICE.TXT(preferably all capitalized)
describing the dependencies, IPR owners, etc. as explaineih the ODIN licence policy
of D1.2 Data Management Plan and its updated versions.

X When committing code and using source code management tools, it is recommended to
follow Git best practices®, such as the following:

(0]

(0]

Make atomic commits, i.e. one logical change per commit.

Do not commit generated, compiled, binaryor large files, whenever possible.
Properly use the .gitignore file to avoid accidental commit of these files.
There are many relevantgitignore templates availablé’.

Do not commit dependencies, use package management or git-submodufe

Do not commit local configuration such as passwords, or absolute file sgsn
references.

Write useful commit messages.

16 Git best practices, https://acompiler.com/git-best-practices/Last access June 2021.

17 Gitignore, https://github.com/github/gitignoreLast access June 2021.

18 Git-submodule, https://git-scm.com/book/en/v2/Git-Tools-Submodules ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

o Adhere to the agreed workflow, such as tagging releases, using branch naming
conventions and avoiding rewriting history.

0 Test before pushing.

Developers should follow common source codgocumentation guidelines and best practice®’,
documenting at least the developed APIs (functions, classes, modules, web serv&e The
source code should be written as much clearly as possible, so that minimum documentation is
needed, in parts where the meaning of the code is not directly visible. Delopers should use
existing documentation tools and frameworks available for the programmingniguage and
environment they are using, such as Doxygef, Javadoc?, Sphinx?, etc. All component
documentation will be also released as part of the ODIN knowledge bageee Section 9.2), as
part of the activities of T3.4.

19 Google style guide https://google.github.io/styleguide/docguide/best practices.htrrilast access June 2021.

20 Doxygen, https://www.doxygen.nl/index.htmlast access June 2021.

21 Javadoc, https://www.oracle.com/java/technologies/javase/javadoc-tool.htnlast access June 2021.

22 Sphinx, https://www.sphinx-doc.org/en/master/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

3 Building software

In order for the source code to be executed in the operation environemt, it needs to be built
into an executable program (i.e. binary, webapp, library, etc.). Bdiing is often a complicated
procedure, since it involves managing external dependencies, such as libias and other
cooperating components. Build automation tools can facilitate this procedure bgroviding
mechanisms to clearly define the building procedure and manage dependencies. At tlsame
time, containerization tools allow applications to run in any environmentgsificantly easing the
deployment process. This section provides an overview of the build automation and
containerization tools that will be used in ODIN.

3.1 Build automation tools

Build automation tools aim to facilitate the compilation of the source codaf a project into one
or more readyt{o-use applications or libraries, such as binary executables, web application
distributions, mobile apps, etc. Build automation tools describe the steps needed to llia
piece of software, the dependencies needed and their required versions, et This section
overviews some of the most used build automation tools, each more or less targegia different
programming environment and language.

3.1.1 Make

The utilitymaké?® dates back to 1976 and has traditionally mostly been used for building C/C++
software, especially in Unix-like systems. The specification of the build processdsfined in a
special file calledMakefile . Each step of the build process is described by a rule specifying the
target object (e.g., an executable file or a library object), its depermhcies, i.e., the files that it
uses for its construction, (e.g., source code files, header filesr other libraries), and the set of
commands that act on the dependencies in order to construct the target objectAny available
utility, e.g., thegcc compiler, can be used in the commands. When the source code is changed,
the developer can run themakeprogram, which builds the target object by running the specified
commands. If the target object already exists, make decides whether it needs to bebuilt by
checking if any of its dependencies has been modified since the previous buildpart from
building, a Makefile can also specify other types of actions, such as installing the built
application in a particular directory, or cleaning up intermediate files. The spiication of make
is quite generic, so that it is not limited to building executable applicationbut any type of file
that is constructed out of other files, e.g., images or PDF documents.

An example Makefile can be seen below. Each object file to build*(o files) is specified as a
target that depends on a number of source and header files. The main executable progma

22 GNU make, https://www.gnu.org/software/make/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

edit , is defined as the first target that depends on all the other objecilds. The order in which
rules are written does not matter, since the order is encoded in the depemdcies of each
target. Targets with no dependencies, such aglean , can be used to perform tasks such as
cleaning up intermediate files or installing the built executable.

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -oedit $(objects)

main.o : main.c defs.h
cC -c main.c

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h
cc -c display.c

insert.o . insert.c defs.h buffer.h
cc -cinsert.c

search.o : search.c defs.h buffer.h
cc -c search.c

files.o . files.c defs.h buffer.h command.h
cc -cfiles.c
utils.o : utils.c defs.h
cc -c utils.c
clean
rm edit $(objects)
3.1.2 CMake

CMake** is a cross-platform build automation tool that can be used to compile dwfare in a
multitude of development environments and in a compiler independent manner. It is dgsed in
such way allowing to be used with the native build environment. Whiteakeuses aMakefile to
compile an executable, CMake operates one level higher and is used generate Makefile s,
Ninja build files, KDEvelop, Xcode, or configurations for other types of lisystems, such as

24 CMake, https://cmake.org/ Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Visual Studio project files. The developer specifies the building process and the dependencies in
a platform-agnostic file, calledCMakeList.txt , which is then translated into the appropriate
build system configuration files, according to the language/IDE/operatingystem used. An
example CMakelList.txt file is presented below.

CMakelists files in this project can

refer to the root source directory of the project
as ${HELLO_SOURCE_DIR} and

to the root binary directory of the project

as${HELLO_BINARY_DIR}.

cmake_minimum_required (VERSION 2.8.11)
project (HELLO)

Recurse into the "Hello" and "Demo" subdirectorie S.
This does not actually cause another cmake executable t 0
run. The same process will walk through the proje ct's

entire directory structure.

add_subdirectory (Hello)
add_subdirectory (Demo)

Create a library called "Hello" which includes th e
source file "hello.cxx".
The extension is already found. Any number of sou rces

could be listed here.

add_library (Hello hello.cxx)

Make sure the compiler can find include files for our

Hello library when other libraries or executables link

to Hello

target_include_directories (Hello PUBLIC

${CMAKE_CURRENT_SOURCE)DIR}

Add executable called "helloDemo" that is built f rom the

source files "demo.cxx" and "demo_b.cxx". The ext ensions
are automatically found.

add_executable (helloDemo demo.cxx demo_b.cxx)
Link the executable to the Hello library. Since t he
Hello library has public include directories we will

use those link directories when building helloDemo

target_link_libraries (helloDemo LINK PUBLIC Hello)

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

3.1.3 Catkin

Catkir?® is the official build system of ROS (Robot Operating System) and the succesdo the

original ROS build system. It combines CMake macros and Python scripts to enhance the
RULJLQDO IXQFWLRQDOLW\ RI &0DNHpV QRYRDY @ dléW)iEtted RZ W L
distribution of packages, better cross-compiling support and better portability. &kin's workflow

is very similar to CMake's but adds support for automatiofind packager infrastructure and

building multiple, dependent projects at the same time. ROS requires its own custobuild

system (i.e., Catkin) since there are lots of independent packages whiatepend on each other,

utilize various programming languages, tools, and code organization conventions, witlarsingle

ROS project. There are three main types of dependency files that need to be rdigured for a

ROS package within a ROS project:

X package.xml : This file is responsible for ordering of the configure stegrhake
sequence for catkin-packages in catkin workspaces, define packaging dependencies for
bloom (what dependencies to export when creating debian pkgs), define system (no
catkin-pkgs) build dependencies for rosdep, and document build or install or runtime
dependency for roswiki / graph tool (rgt_graph). An examplpackage.xml file is shown

below.

<package>
]
<namexexample_pkg</name>
<buildtool_depend> catkin </buildtool_depend>
<build_depend> cpp_commor/build_depend>
<build_depend> log4cxx </build_depend>
<test_depend> gtest </test depend>
]
<run_depend>cpp_commor/run_depend>
<run_depend>logdcxx </run_depend>

</package>

X CMakelists.txt : In general, CMakeLists.txt is responsible for preparing and

executing the build process using the enhanced functionality of CMake as descrithe
above. An example is shown below.

25 ROS Catkin,http://wiki.ros.org/catkin Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

find_package (catkin REQUIRED COMPONENPS _common
geometry_msgs)

find_package (Log4cxx QUIET)

generate_messages (DEPENDENCIE§eometry_msgs)

catkin_ package (
CATKIN DEPEND$pp common geometry msgs

DEPEND%o0g4cxx
)
add library (example_lib src/example.cpp)
target_link_libraries (example_lib

$(catkin_LIBRARIES) $(LOG4ACXX_LIBRARIES)
add_dependencies (examplelib geometry msgs gencpp)

X setup.py : If a package declares Python modules for other packages to use, those need
to be declared in asetup.py file. The names used there could be names of catkin
packages or packages distributed over Pypi. An example is shown below.

from distutils.core import setup
setup (
]
requires =['rospy']
)
3.1.4 Maven

Apache Mavert® is a system used to build and manage Java-based projects. Maven can

simplify and automate the initiation of Java projects, the building process and demdency
management. It can be used to automaH D VHYHUDO SKDVHV RI D SURMHFW
including source code validation, compilation, testing, packaging, verificatiomsdtallation and

deployment.

The initiation of a Maven project is based on plugins implementing severafchetypes, i.e.,
templates for specific types of projects, such as command-line applicationsyeb applications,
plugins, etc. Initiating a project based on an archetype creates the necessary directory strucéu
and configuration files that will be needed for the build process.

2 Apache Maven, https://maven.apache.org/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

The main configuration file for Maven is theom.xml file. It is and XML file specifying the Project
Object Model (POM) of the application, containing most of the information need to build the
application and manage its dependencies. An examplpom.xml file can be seen below'.

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlins:xsi= "http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:schemalocation= "http://maven.apache.org/
POM/4.0.0 http://maven.apache.org/
xsd/maven-4.0.0.xsd" >

<modelVersion> 4.0.0 </modelVersion>

<groupld> com.mycompany.app</groupld>
<artifactld> myapp </artifactld>
<version> 1.0 -SNAPSHGJversion>

<properties>
<maven.compiler.source>
1.7
</maven.compiler.source>
<maven.compiler.target>
1.7
</maven.compiler.target>
</properties>

<dependencies>
<dependency>
<groupld> junit </groupld>
<artifactld> junit </artifactld>
<version> 4.12 </version>
<scope>test </scope>
</dependency>
</dependencies>
</project>

27 Example taken fromhttps://maven.apache.org/guides/getting-started/maverin-five-minutes.htmlLast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

3.1.5 PIP

Pip?® is a package installer for Python projects. Python is an interpretedriguage, hence there
is no notion of compiling or building source code to an executable. Hower, pip is included in
this list, since it can be used to manage dependencies for Python projects, siarilto the
dependency management functionalities of build automation tools.

Pip is essentially a packages installer for Python libraries. Developetan use pip to install a
Python library, mainly from the Python Package Indé&X% Pip can be run from the command line
and performs by downloading the requested package and installing it at th@oper location in
order to make it available to Python code.

When creating a project involving several external libraries, it is importarmt list them in a formal
manner so that other developers can collectively install all necessary dependeesiin order to
execute the application. To specify and automate dependency installation,edelopers can
create arequirements.txt file including all necessary libraries and their versions. This file can
be provided as a command line input to the pip tool, which downloads and ind&kll of them,
respecting the corresponding version numbers and using the latest versions tiie required
libraries, when this is allowed by the specification. An examplequirements.txt file can be
seen below®. Version specifieré* can be used to require that a library version exactly matches
a required one, is greater than a required minimum, etc.

Requirements without Version Specifiers
nose
nose -cov

beautifulsoup4

Requirements with Version Specifiers
docopt == 0.6.1 # Must be version 0.6.1
keyring >=4.1.1 # Minimum version 4.1.1

Refer to other requirements files
-r other-requirements.txt

28 PIP, https://pypi.org/project/pip/ Last access June 2021.
2% python Package Indexhttps://pypi.org/ Last access June 2021.

30 Example modified fromhttps://pip.pypa.io/en/stable/cli/pip_install/#example-requirements-fileast access June 2021.

31 PIP version specifiershttps://www.python.org/dev/peps/pep-0440/#version-specifiers ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

3.1.6 NPM

NPM*? is the build and packaging system of the Node.js sever and is a popular apti for
developing web applications. NPM can be used to initiate a project, managts dependencies
and build the source code into a distribution-ready package.

The core configuration for NPM is defined in a JSON file nameplackage.jsonwhich holds
information such as the project name, its dependencies, and any scripts to run in order test
and build the application. NPM offers a command line interface that usgsackage.json to
create the initial project structure, download the dependencies and manage the available scspt
for performing build and other actions. An exampleackage.jsoffile can be seen below.

{
"name": "test-project” ,
"description": "A test project” ,
“main": "src/main.js"
"scripts": {
"dev": “"webpack- dev-server -- inline --progress @ w
config build/webpack.dev.conf.js" ,
"start": "npmrun dev"
"test": “npm run unit*
"build": "node build/build.js"
b
"dependencies”: {
"vue": "12.5.2"
h
"devDependencies™: {
"autoprefixer": "n7.1.2"
"babel-core": ""6.22.1"
"babel-eslint": ""g8.2.1"
"webpack-merge": ""4.1.0"
b
"engines": {
"node": ">=6.0.0" ,
"npm": ">=3.0.0"
}
}

32 NPM, https://www.npmjs.com/Last access June 2021.

33 Example modified fromhttps://nodejs.dev/learn/the-package-json-guidd ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

3.1.7 Gradle

Gradle* is a general-purpose build automation tool and is the default build tool uséy Android
Studio to build Android mobile application projects. The main configuration script farproject is
specified in a file usually nameduild.gradle , and includes information such as the project
name, SDK versions used, build configuration, dependencies, etc. Gradle scripts can hgitten
in either the Groovy® or Kotlin® domain-specific languages (DSLs), with Groovy being the one
used by Android Studio. Android Studio uses multiple Gradle scripts to specify a single prci
describing application-wide or module-wide build configurations. An example Gradle scrimed
for an Android module is shown below.

34 Gradle, https://gradle.org/ Last access June 2021.

35 Groovy language https://groovy-lang.org/Last access June 2021.

36 Kotlin language https://kotlinlang.org/Last access June 2021.

87 Example modified fronhttps://developer.android.com/studio/build_ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

apply plugin: ‘com.android.application’

/* Android-specific build options. */
android {
compileSdkVersion 28
buildToolsVersion "30.0.2"

defaultConfig {
applicationld ‘com.example.myapp'
minSdkVersion 15
targetSdkVersion 28
versionCode 1
versionName "1.0"

}
buildTypes {
release {
minifyEnabled true
}
}

}

[* Dependencies required to build the module */
dependencies {
implementation project(":lib")
implementation 'com.android.support:appcompat-
v7:28.0.0'
implementation fileTree(
dir; libs'
include: ["™jar]

3.1.8 Bazel

BazeP® is an open-source build and test tool similar to Make, Maven, and Gradle. ltes a
human-readable, high-level build language. Bazel supports projects in multiple larages and
builds outputs for multiple platforms. Bazel supports large codebases across multiple

38 Bazel, https://bazel.build/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

repositories, and large numbers of users. It use8UILD files written in StarlarR® in order to
direct Bazel on what to build and how to build it. A build target specifies a sef input artefacts
that Bazel will build plus their dependencies, the build rule Bazel will usetaild it, and options
that configure the build rule. A build rule specifies the build tools Bazelill use, such as
compilers and linkers, and their configurations. Bazel ships with a number of build rules covering

the most common artefact types in the supported languages on supported platforms.

The process when running Bazel is as follows. First thBUILD files relevant to the target are
loaded. Then these files are being analysed to check their inputs ardépendencies. The build
rules are applied and the action graph is produced. The action graph represents thauild
artefacts, the relationships between them, and the build actions that Bazel Inperform. Thanks
to this graph, Bazel can track changes to file content as well as changes actions, such as
build or test commands, and know what build work has previously been done. Tiggaph also
enables you to easily trace dependencies in your code. Finally the build actioase executed on

the inputs until the final build outputs are produced.

Below is an example of twoBUILD files in a project tree where the second one has a

dependency on the first.

cc_library (
name = "hello -time" ,
srcs =["hello-time.cc" 1,
hdrs =["hello-time.h" 1,
visibility = [“lmain:__pkg__ "],

39 Starlark language,https://docs.bazel.build/versions/4.1.0/skylark/language.htnilast access June 2021.

Version 1.0 | 2021-06-30

ODIN ©

Deliverable D3.1 t Operational framework

cc_library (
name = "hello -greet" ,
srcs =["hello-greet.cc” 1,
hdrs =["hello-greet.h" 1s
)
cc_binary (
name = "hello -world" ,
srcs =["hello-world.cc" 1,
deps =
":hello-greet" ,
"/llib:hello- time" ,

3.2 Containerization

The output of the building process is an executable file that can be run in thexecution

environment, H J LQ D KRVSLWDOpV VHUYHU +RZHYHWNSWELDQAQ®\QRW
large applications. In most cases, apart from the executable file(s), enneeds to setup the

environment in which to run the application: install the necessary libraries, utiliprograms,

servers, etc., on which the application depends. As an example, an applicati predicting future

hospital needs based on monitored history may consist of a web interface and a di&end

written in Python. In order for this to run on a target machine, one would nedd setup a web

server to server the web interface, install Python for the backend, itadl Python libraries to

support the communication between the web interface and the backend, itall machine-

learning Python libraries used by the prediction mechanism, etc.

Containerization software facilitate the execution of an application in target machine by
allowing software to run in an isolated environment, complete withll dependencies needed.
The goal is that once the complete container is available, it is dliat is needed (apart from the
containerization software itself) to run the application in any target machine.

The most prominent containerization software currently in use is DocKér Containerization in
Docker is based on the key concepts of images and containers. Aimage is a miniature file
system containing the necessary files and directory structure needed for an application to ruf.
developer can create an image by using an existing image, e.g., af Linux distribution, and by
adding to it additional layers of files, e.g., installing a web serveor copying files from the

40 Docker, https://www.docker.com/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

GHYHORSHU pV cbrikahé&r}6\ahHddlatékl environment created from an image. Users can
start a container and run applications inside it, knowing that they will be run the isolated
environment specified in the image. The container can optionally communicate withther
containers or with the host machine.

In order for a container to use data stored in the host machine, or in orddior multiple

containers to share data among them, Docker usegolumes 9ROXPHY DUH 'RFNHUpV PHFI
for persistent storage. They can be created outside the context of any atainer, mounted to

specific filesystem directories and used by containers to read or write data.

The specification of a Docker image is written ina Dockerfile . There is extensive
documentation available on how to write @ockerfile “'. A Dockerfile contains instructions
on how to create the isolated environment to be used in a containeAs an example, consider
the followingDockerfile , used to build a Node.js web applicatioft.

FROMnode:14

Create app directory
WORKDIHRusr/srclapp

Install app dependencies
COPYpackage.json ./
RUNnNnpm install

Bundle app source
COPY..

EXPOSEB0O80
CMD["node", "server.js"]

Each line consists of a Docker command, such aFROIMWORKDIBNnd COPYThe first line gets

an existing Docker image as a starting point for this image. Theode:14 image is a minimal

Linux distribution including only the files necessary to run a Node server. TH&/ ORKDIR
FRPPDQG VHWV WKH FXUUHQW ZR U N4fdyseemMUTHheOO®RtbNEAdnY KL Q WK
copies the package.json file (see Section 3.1.6 for details aboupackage.json) from the
FXUUHQW GLUHFWRU\ Ztewtl th@wivkinbl dikeRtdHnoptiie irhapé! Vhan thepm

41 Dockerfile description,https://docs.docker.com/engine/reference/builderi ast access June 2021.

42 Example modified fromhttps://nodejs.org/en/docs/guides/nodejs-docker-webappl ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

install command is run inside the image to install the necessary dependencies, as desaib
in package.json . The code of the application is then copied to the working directory of the
image, so that all relevant files for the webapp are now availabin the image. The final two
commands are instructions used whenever a container is executed using this imagtat tell
how to run the application: which port to expose and which command to run for rumg the
application.

3.3 ODIN guidelines

In ODIN, the developers should use a build automation tool such as the ones describén
Section 3.1. Using such a tool allows the formal specification of the build procesa the
appropriate configuration files, which will be submitted to version control alongith the source
code of the application, and consequently its automation. The developers are frée choose the
build automation tool that is most suitable for their development.

In ODIN, each software component will be wrapped in Bocker image that can be used to run
the component at a specific container within the target deployment. To achieve thishe
developer needs to specify two types of files:

x The build automation description file, e.g., avakefile , a package.json file, etc.,
describing the steps needed in order to build the target object, e.g., anxecutable, a
library, a website, etc., meant to be used by a build automation tool, suchsaCMake,
NPM or Gradle. This file (or files) needs to be present in the Git repository tife
software component, along with the source code.

x A Dockerfile , organized in two stages, when possible:

0 Stage 1. How to use the selected build automation tool to build the component
out of its source code.

0 Stage 2: How to create the Docker image containing the built component.

As a concrete example, the following Dockerfif describes how to build a Docker image of an
Angular web application, organized in two stages.

43 Example modified fronhttps://dzone.com/articles/howto-dockerize-angular-appl ast access June D21.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Stage 1
FROMNnode:10-alpine as build - step

RUNmkdir - p /app
WORKDIRapp
COPYpackage.json /app

RUNnNnpm install
COPY. /lapp

RUNnpm run build --prod

Stage 2
H e
FRONMNginx:1.17.1-alpine

COPY-- from=build-step /app/docs /usr/share/nginx/html

This Dockerfile essentially describes two images, one used to create the built application and
the other being the main image of the component. In Stage 1, the productidevel website is
built using the NPM build automation tool and the associateghackage.json file. A key
difference with the example of Section 3.1.7 is thas build-step part of the first line, which
VSHFLILHV DQ-DOHBY |&g& XA @nage. This image will only be a temporary
image, to support the creation of the main image of Stage 2. The following lines Wi8tage 2 are
used to copy the necessary files in this temporary image and run the appropriate monands to
build the production website (see Section 3.1 for build tools). The finfles of interest are stored
in the /app/docs directory inside thebuild-step image.

In Stage 2, the produced website is copied to a fresh image, which is the main imagf the

component, and the one that will be used to run containers. The main thing to tice is the w
from=build-step parameter in the COPYommand, which instructs Docker to copy files from
another image (the one aliasedbuild-step) to the current working image. Note that the
images of the two steps need not start from the same base image. Theyeaquite independent
in how they are constructed.

The above described two-stage approach permits the complete description of how treate a
runnable Docker image in a singleDockerfile . The developer does not need to first build the
executable and then create a Docker image; creating the Docker imagtakes care of buiding
the software as well. At the same time, the run-time execution environment is sapéed from
the build-time execution environment, since they are both containerized in sepaeaimages.
However, only the result of the second stage persists and constitutes the outputf dhe
containerization process. This stage image contains the executable files that are used by the
end-user in a container. The two-stage approach can also be extende® tmore steps, if more
processes are required in order to build the executables or the Docker image.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

4 Testing software

Software testing is a crucial part of the development process prior to redse. Proper and
frequent testing ensures the robustness of the developed applications and early capturesiss
inadvertently introduced when new functionality is added.

Four levels of software testing are commonly recognized, as depicted in Figure 5:

X Unit testing: Testing individual units of code in isolation to assess ifeth fulfil their
desired functionality.

X Integration testing: Testing the interconnection of components in a larger part &
system, to assess how they operate in combination.

X System testing or Developers Acceptance Testing (DAT): Testing the entire systeas a
whole.

X Validation: Broader evaluation of the final phases of development, to ensutbat
functional and non-functional requirements are met, and to evaluate user acceptance.

Figure 5: Software testing levels.

7KH ygialmm WHVWLQJr DQG qYDOLGDWLRQr OHYHOV LQYROYH WKI
compliance to functional and non-functional requirements. These types désting will be
SHUIRUPHG DV SDUW RI| WGMHN Pilew Dasigily DeploymRdnt; Evalgation and

Validatonr ,Q WKH FRQWH[W RI :3 DQG WKLV GHOLY HH DyX@H WW K H
WHVWLQJr DQG qL QW H J U Dt\the RuBctionality \Wf Lir@lividuak ¢ompdaents Hiveir

APIs (Application Programming Interfaces) and their interconnection. Such kinds of tests cha

well-defined enough to be automated and included in the automated DevOps pipeline.

4.1 Unit tests

Unit testing refers to testing individuaunits of code, such as functions, classes, or modules, in
terms of whether they meet their design requirements. Units are usually small parté an
application that perform a single task or a small set of tasks. Unit tests evaluatine
performance of these blocks of code in isolation, by providing them with exampieput and
comparing their output to the expected output.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Unit tests are implemented as additional code written by the developer of trapplication along
with the code of the main functionality. The unit test is an isolatedgue of code that uses a
single unit, e.g. a function, including only the necessary code to use the unithe test code
provides the unit with input that ideally covers the whole range of input thaéin be provided to
the unit, including extreme cases or erroneous input, runs the unit and reports the sts,
possibly comparing them to the expected output in each case.

Writing and updating unit tests as the code progresses adds an additional burden to the
developer, since they require time and more thinking. However, the benefits sifjcantly
outweigh this burden in the short- and long-run, since unit tests lead to easier mainterze.

Adding and running unit tests in an application at the time of development haseveral
advantages:

X They can detect bugs early during code development. Resolving bugs in small péscof
code is easier than trying to resolve the same bugs after the whole systens i
implemented.

X The process of writing the unit tests forces the programmer to think more carefully about
the unit being developed, of its possible inputs and outputs. This can lead to a ater
LPSOHPHQWDWLRQ RI WKH XQLWpV IXQFWLR@HOOIRWVIWMKH DQ

project.

X The existence of unit tests allows the programmer to be more confide about
modifications in the code. After making a change in the code, the prognamer can run
all unit tests automatically to see if the change has unexpectedinfiuenced another
component in the system.

Depending on the programming language used, there are several framews or libraries that
can be used to assist the developer in defining and running unit tests. Although theogrammer
could manually write the tests, if desired, these frameworks reduce the timeeeded to
construct the unit tests, making it easier to create unit tests together with thaurictional code.
Some popular choices for common programming languages and environments arthe
following:

x CIC++: Catch2*, GoogleTest®, Boost.Test®, NUnit", Visual Studio native C++ unit
tests®

4 Catch2, https://github.com/catchorg/Catch2 Last access June 2021.

4 GoogleTest,https://github.com/google/googletestl ast access June 2021.

46 Boost.test, https://www.boost.org/doc/libs/1_75_0/libs/test/doc/html/index.htirilast access June 2021.

47 NUnit, https://nunit.org/ Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Java: JUnit°, TestNG®, JBehave*
Python: unittest?, pytest®®

JavaScript: Mocha®, Jest®®, ChaP’, Jasmine®
R: testthaf®

4.2 Integration tests

While unit tests test isolated units of an application, integration tests test the conrtem
between different parts of an application, or between applications inlarger system. Integration
tests are used to evaluate the performance of large components and theikPIs (Application
Programming Interfaces) in terms of their compliance to the functional requirents. Integration
tests are more complex to define than unit tests and they may be more difficuli evaluate,
since they involve larger workflows involving several components.

X
X
x ROS rostest, GoogleTest, Python unittest
X
X

Integration testing involves the detailed definition of a test case scenariits execution, either

automatically or manually, and the reporting of the results. Two common typeof integration

testing are big-bang testing and bottom-up testing. In ig-bang testing, the components are

combined to form the application of interest and then the combined system is usedrfo
integration testing. In bottom-up testing, the low-level pieces of anpalication are tested first

(e.g. in unit tests), and are then combined to form larger structures in thiierarchy. Tests are

performed iteratively at each level of the hierarchy until the whole application is tested

48 Visual Studio native C++ tests, https://docs.microsoft.com/en-us/visualstudio/test/getting-starteavith-unit-testing ?view=vs-
2019&tabs=mstestLast access June 2021.

49 JUnit, https://junit.org/junit5/Last access June 2021.

50 TestNG, https://testng.org/doc/ Last access June 2021.

51 JBehave, https://jbehave.org/Last access June 2021.
52 Python unittest, https://docs.python.org/3/library/unittest.htmlLast access June 2021.

53 Python pytest, https://docs.pytest.org/en/6.2.x/Last access June 2021.

54 ROS rostest, http://wiki.ros.org/rostestLast access June 2021.

%5 Mocha, https://mochajs.org/Last access June 2021.
56 Jest, https://jestjs.io/ Last access June 2021.

57 Chai, https://www.chaijs.com/Last access June2021.

58 Jasmine, https://jasmine.qgithub.io/Last access June 2021.

9 R testthat package,https://testthat.r-lib.org/ Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Depending on the complexity of an integration test scenario, it may be executeeither
automatically or manually. In automatic testing, the test scenario is written anformal manner,
e.g. as a Jenkins pipeline (see Section 8.1.1 for a description of Jenkinsyhich can then be run
automatically by a testing framework. In manual testing, the individual steps oft@st scenario
are written in detail and are then performed by a human operator. At each stethe expected
output is specified, so that the tester can report the success or failure of eh step. Manual
testing systems such as Squastf can be used to facilitate the definition of test case scenarios,
and reporting the test results.

4.3 Test server infrastructure

A test infrastructure will be provided to facilitate the task of testing theoftware components
prior to production deployment, in an environment intended to resemble operating nditions
that will be present in the actual pilot sites.

The test infrastructure vill be provisioned in the cloud infrastructure that Inetum has at its
datacentre located in Murcia, Spain. Table 3 provides a brief description ofsidesign and
performance features.

0 Squash, https://www.squashtest.com/?lang=en_ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Table 3 Test environment cloud datacenter features.

Tier IV. 99.999% availability.

Anti-seismic construction with insulated electromagnetic.

Redundant infrastructure for mission environments review.

1.2 MW of power maximum in datacentre of high density.

Double electric ring with 2 UPS and 2 groups generators with 1-week
autonomy.

X *5((1 ,7 g%DVH 'HVLJQr EHLQJ PRUH HIILF
energy.

X X X X X

Facility

X Specialized security personnel 24x7.

x Intelligent indoor and outdoor video surveillance system with intruder
detection.

Security X Access to critical rooms controlled by facial biometrics (TI, MPOE, SOC,

NOC, etc.).

X Very Early Smoke Detection Air (VESDA).

X Water extinguishing system mist, avoiding the evacuation of the
datacentre.

) X Customized 24x7 support backed by technical team of experts with
Operation presence onsite IT and Industrial staff.
x ITIL, SSAE16, ISO, ICREA standards level 5.

X 2N end-to-end redundancy.
x Two independent links with diversified access and connection to two
neutral points (Telvent and Interxion).

Communication X Own public address, balanced between the two links
x Safety equipment Service Provider logic, with protection against DDOS
attacks.
X 2 Multi-Carrier zones (MPOE) for service providers with exterior fingerptin
access.

The cloud test infrastructure for the ODIN Project uses private IP addresses to mmunicate
inside the cloud, and public IP addresses to communicate over the Internet. Public IP address
allow for secure communication from origins to prevent unauthorized accessand each
deployed instance has allocated one public IP. The cloud implements firewall prot®n that
allows for the definition of rules to restrict access from specific sites and to sgific resources
inside the virtual space allocated for the project.

4.4 ODIN guidelines

The developers of ODIN components are encouraged to includenit tests in their components,
update them as code progresses and new use cases are added, and execute timeewhen
making modifications to ensure that no bugs are introduced to existing code. &hdevelopers
are free to choose the most appropriate unit testing framework for their palications,
corresponding to the programming language and environment used.

Each project partner will be responsible for unit testing their own modules and components. Unit
tests should at least be run prior to the release of a component (see Seati 5). After major
changes are made in a component, unit tests should be executed to ensurthat the
functionality is as expected and that no other parts of the compom are damaged. Whenever

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

possible, unit tests should be included as part of the automated DevOps pipelinia, the Jenkins
scripts used for orchestration (see Section 8.2 for guidelines regarding Jenkins-bes
orchestration), so that their execution is triggered upon pushing code to the GitLab server.

After all components of a sub-system of the ODIN platform are implemeimteintegration tests
will be performed to ensure that the combined components operate as expectedntegration
tests should be automated when possible, or manually defined otherwise.

Automated integration tests should be written as Jenkins pipelines, so that they can be
automatically triggered upon changes in the source code of the componenté Jenkins pipeline
can define the steps to take to perform the integration test, failing upon faikiof a specific step.
Pipelines can be blocked using thenput Jenkins step when confirmation from a human tester
is needed before resuming the pipeline. The test results can be stored and repodtédy the
SLSHOLQH LWVHOI E\ PDNLQ tke\phpelhe sariktH gSRVWr EORFNV

Manual integration tests should be written in cases where automated tests are difficult to define.
For each integration test, a detailed description of the test scenarineeds to be specified,
detailing the steps to take and the expected output of each step. Thiests should be executed
by a human tester and the result of each step recorded. Testing platforms such as Squdskan
be used for this purpose. The decision to use such platforms will be taken latduring the
course of the project.

The initial execution environment of the integration tests will be tH@DIN testing infrastructure
provided by Inetum and described in Section 4.3. A detailed design of the services and provided
by the testing infrastructure will be provided as part of the deliverables WP7, when application
requirements are specified. Details about how to access the testing servenduding URLs and
authentication, will be provided to the project partners at the time the testing servés setup.
After the integration tests are run successfully in the testing infrastructure, @it will be
transferred to the actual pilot sites and robotic applications.

Each partner is responsible to write integration tests whenever their componentsse other
components of the same or other partners. Sample input data for the egation of the
integration tests can be provided by the component owners or the integration tea The
DevOps and integration team is responsible for the execution of the integratidests, either by
setting up and the appropriate Jenkins pipelines, together with component provide and
making sure they are correctly triggered and executed, or by running the manual tests and
reporting the results.

51 Squash, https://www.squashtest.com/?lang=en_ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

5 Software release

Once a piece of software has been built and tested, it is ready tbe released so that it is
available for use by end-users. This section describes the types of releasésreseen for the
ODIN components, as well as the repositories that will be used to publish released software.

5.1 Software release versions

According to ISO/IEC/IEEE 12207:201%, in a typical software development lifecycle, the
software passes through specific stages of development, according to its maturity and
readiness. The most typical stages of development are the following.

x Pre-alpha: This is the stage of initial software development and unit testindpefore
formal testing by designated testing procedures.

x Alpha: In this stage, developers test the functionality of the software throughseries of
white-box, black-box or gray-box techniques, in order ensure that ale&tures are
present and to address major bugs. Software released at this stage mae erroneous
and unstable.

X Beta: In this stage, software is tested prior to being released to the gendrpublic. Tests
at this stage are focused on customer acceptance, including usability tests. Sefare at
this stage is used for demonstrations to the general public, but may still be unstable.

x Stable release: In this stage, the software is ready to be released to the general publi
and is in a fully functional, stable state. This version may also be digitafiigned, to
guarantee its integrity to customers.

Once software is released to the public, it is still under constant testirand reviewing, either by
the public through bug reporting systems, or by the developers themselves, throughug
detection and re-designing of functionalities. Further versions of the &ware pass through tre
above stages prior to public release.

5.2 Tagging versions

Tagging software versions is important in order to keep track of changes thugh the various
releases. Proper tagging permits dependency handling tools, such as thenes described in
Section 3.1, to install the proper versions while building software from source or creajibocker
images.

52 |ISO/IEC/IEEE 12207:2017. Standards catalogue. International Organiat for Standardization. November 2017. Available at:
https://www.iso.org/standard/63712.html Retrieved 16 June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Semantic versioning® is a principled approach to release tagging, where the version numbers
have specific meaning useful to the developer and to automated tools. lem®antic versioning, a
software release is tagged with a version number of the following format:

MAJOR.MINOR.PATCH

e.g., 1.4.2, optionally followed by pre-release tags appended t&f the patch number, separated
by a dash, e.g. 1.0.0-alpha.

The components of the tag incremented with the following rules:

x The MAJORrersion number is incremented when there is a change in the public API
exposed by the software.

x The MINORversion number is incremented when new functionality is added, in a
backwards compatible manner, without affecting the existing exposed API.

X The PATCHrersion number is incremented when backwards compatible bug fixes are
made.

After a software version is released with its tag, it must not be altered any way. Any changes
to the software must be released as a new version. This prevents problemsth dependencies,
since, once a particular version is used by an application, it stays the same at all times.

For initial development, prior to the first release, thAJORversion number should be 0, e.g.
YHUVLRQ 2QFH WKH ILUVW VRIWZDUH UHXHDN B HIVY @PHG HW K
MAJORwumber takes the value of 1 and is then incremented only whenever arPAchange is

made.

5.3 Docker registry

Docker provides the ability to create a registry of Docker images, for d&erized software that is
ready to be released. The Docker registfi is a service for storing and delivering built images,
available in different versions specified by tags. The user can upload and dolwad images
using push and pull commands from the command line.

%\ GHIDXOW 'RFNHU UHJLVWU\ XVHV WKH KRVW FDRRIZGHYPM ILOF
cloud-based systems can also be used for large deployments, such as Amaz@8 buckets,

Microsoft Azure, etc. Docker registry handles user authentication through TLS anbasic
authentication. Docker registry can be configured to provide notifications to theegtelopers in

response to events that happen in the registry, such as new available versions.

53 Semantic versioning https://semver.org/Last access June 2021.

54 Docker registry, https://docs.docker.com/registry/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Docker registry can be used to setup a private registry, with limited access touthorized
developers. For larger projects, a public registry can be setup. Dockedub®® is such a public
service, supporting all functionalities of the Docker registry, but allovgnpublic access to the
images, facilitating the development of large-scale software projects.

5.4 ODIN guidelines

During the development of a software component, there will be at leasivo types of software
release: Intermediate and stableIntermediate releases cover the pre-alpha, alpha, and beta
phases described in Section 5.1 and may contain new added functionality, small changes, bug
fixes, improvements, etc. Stable releases are intended to be fully tested versions of the
components, ready to be publicly released and used by other developers, andigned with the
overall ODIN platform version.

Regarding the overall ODIN platform, three major releases are expectatlring the course of
the project, expected in M12, M24 and M36, respectively. Each version will includgpecific
components, reflected in the ones available in the Docker registry, and used in the pilot sites.

The released components should follow th&emantic Versioning approach described in Section
5.2. In order to avoid frequent changes of the MAJOR version number, it is adviséhat the API
exposed by each component is thoroughly designed during each phase of developmest that
it covers all the foreseen cases of interaction.

The released components will in general have their own lifecycleach maintaining its own
versioning numbers, according to their status. This numbering may be different than the
numbering used for the overall ODIN platform. A component may in parallel be implenting a
new feature in a separate branch while some fix is made in the master bien(see the GitFlow
workflow paradigm in Section 2.2.3.). A particular ODIN platform release may consist of
components of various versions, with the restriction that these versions astable releases of
the components.

Each ODIN platform release will be accompanied by the full list of the componentsdnsists of
along with their stable version numbersThis list will be essentially formalized in the docker-
compose files (or other similar composition files, e.g., Kubernetes YAMLe§) that will specify
KRZ WR GHSOR\ WKH S O DAY tiestriBgrd\beloR P SECbH Q3Vthese files will be
published and managed in the GitLab server similar to the source code of th@mponents, but
in a different repository, since they describe deployments of composite applicati® instead of
single components. The stable releases of the ODIN platform will only constdtstable releases
of their components.

% Docker Hub, https://hub.docker.com/ Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

In ODIN, aprivate Docker registry will be used for releasing components. The Docker registry
will be available at:

https://reqistry.odin-smarthospitals.eu

In the initial phases of the project, the registry will be kept private tiaccess provided only to
the consortium members. A migration to a public registry, such as Docker Hub, mayeb
FRQVLGHUHG GXULQJ WKH FRXUVH RI WKH SURWHKHWS OBRWYW ORZR_

exploitation in the corresponding work packages.

Access to the Docker registry will be provided to all consortium members in tha&st months of
the project. User authentication will be handled through the mechanisms described in Section 9.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

6 Deployment

Deployment of an application means its installation and use at the end-user environmbewhich
for the ODIN project is the computing infrastructure of the pilot sites (hospitals).eployment
involves selecting and composing the necessary published components and services in erdo
perform a task of interest. This section describes the tools that will be e@d in ODIN for
composing released components into complete applications, and for automaticallupdating
them once new versions are available.

6.1 Service composition

Service composition deals with composing software modules into large applicatiang/hen it
comes to software modularity, there are two major approaches:

X Monolithic applications
X Service-oriented software

In monolithic applications, the entire business logic is contained in a single applicatiorhiah is
mostly independent from other applications. Monolithic applications are usually weitt in a
single language or software development framework and usually resultaniarge codebase with
the source code for the entire application. Modularity in monolithic applications is ackied in
WKH VRXUFH FRGH HPSOR\LQJ WKH ODQJXDJHpV PHFKDQLVPV VX

On the other hand, in service-oriented applications, the business logic is gpinto a number of
small applications that communicate with each other through well-defined AP[#\pplication
Programming Interfaces). Each service, also referred to as micro-service, igsponsible for a
well-defined subset of the complete application logic. It may be written its own language or
framework and maintained by a different set of developers. The logic of the completp@ication
is achieved by composing these software modules.

Figure 6: Monolithic vs. micro-service applications.

There are advantages and disadvantages in both approaches. Monolithic appliiens are easy
to deploy and test, since they consist of a single software component. Hower, they are
difficult to scale up. Adding new features and fixing bugs requires altering thehole application,
and it is likely that changes in one part will affect other parts of the applitan as well. Due to
this fact, maintaining and updating the software is harder and more time consuming.

The service-oriented architecture was created to address this scalability issuBach service is
self-contained and quite independent from the others, so adding new functiality or resolving
bugs is faster and less likely to cause problems in other parts of the wleoapplication. If a
SHUYLFHpV $i8findd\and r€§pexrted, the application behind it could change altogether or
replaced by another, without affecting other services using the APIl. However, ecno-service

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

applications are more difficult to deploy. Instead of deploying a single applicatioone needs to
deploy a set of applications and manage their communication through proper configuratiorel

Micro-service-based applications have one more advantage compared to monolithic
applications. Creating small applications that perform a single task well lieneficial in software
development in general. One can focus on how to perform the task robustly and fasvithout
needing to deal with other irrelevant tasks. The developer is encouraged to #pthe logic into
small pieces which are easy to reason about. This makes code clearexnd easier to modify by
other developers or the same developer in the future. The resulting pieces obfsvare are
reusable and can be combined with other pieces in ways that were not originally plarthe

The composition of micro-services requires systems that manage how the services are
connected. These orchestrators manage which services should start/stop at ariyne, how they
can be discovered by other components, which ports they expose, etc. This isaxtra level of
management (and complexity) added by the micro-service architecture, but it allows @h
creation of highly scalable applications that are easy to maintain by diverse tea of
developers.

The containerization functionalities offered by Docker significantly facilié the creation of
micro-service-based applications. Each service can be shipped in its own Dockeowitainer,
self-contained with any dependencies of the system in which it was developeahd ready to be
integrated with other containerized components. On top of these self-ctained services, tools
for service composition operate to manage their interconnection in large apgéitions.

6.2 Tools for service composition

This section briefly discusses the most popular tools used for the composition ofocker
containers in large applications.

6.2.1 Docker-compose

Docker-compose® is the most direct way to compose a number of Docker images to create a
larger application. Docker-compose is already available in a Docker indkation. Docker-
compose reads the description of a composition from a designated file uslhanamed docker-
compose.yml. The docker-compose.yml file, written in the YAML syntax, describes which
Docker images to use, which ports they expose, how to setup the environment for easkrvice,
etc.

As an illustrative example, consider the following docker-composéd, used to deploy a web
applicatiorf’.

5 Docker-compose, https://docs.docker.com/compose/Last access June 2021.

57 Example modified fromhttps:/github.com/compose-spec/compose-spec/blob/master/spec.md.ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

version: "3.9"

services:
frontend:
image: awesome/webapp
ports:
- "443:8043"

backend:
image: awesome/database
volumes:
- db-data:/etc/data

W VSHFLILHVY WZR VHUYLFHV QD P Hd egdiJsRr@Qod, it oecifid3 @ttchq ED F N H C
Docker image to use, as well as additional information needed for its pleyment. For the front-

HQG VHUYLFH WKH gDZHVRPH ZHEDSSr LPDJHUHVDXOWHGYV HW XBK W
the back- HQG WKH qDZHVRPH GDWDEDVHr LPDJH LV XVHG ZNRVKMHW X
an additional configuration for the data volumes to use. Each service can refer ¢ther services

by using the names specified in the docker-compose file.

The docker-compose.yml file is parsed by the docker-compose engine, which pulls the
necessary images from the host machine or the remote repositories, and creates tmecessary
environments for them to run and interact. The end result is that a sef ®ocker containers are
executed and communicate with each other. In the example above, two sersgwould execute,
one holding the backend database and the other holding the webapp Ul, which agsses this
database.

Docker-compose supports a rich set of configuration options allowing to designwide variety of
workflows.

6.2.2 Docker swarm

Docker swarm is a group of docker applications that are joined together in a clustelRocker
swarnf® is therefore a mode of operating the Docker-compose engine described abovia
Section 6.2.1, so that the complete application can be executed in a distributed maer, e.g. in
a computer cluster. The configuration of Docker-swarm is based odocker-compose.ymi

files, similar to docker-compose. However, Docker swarm facilitates dter deployment, by

68 Docker swarm, https://docs.docker.com/engine/swarm/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

offering orchestrated monitoring, resource allocation, load balancinggtc. The fact that in a
Docker swarm there is one manager node and several worked nodes isafieason for achieving
high quality resource management and cluster efficiency.

When running in Docker in swarm mode, the user can deploy several services asstack. A
stack is defined in adocker-compose.yml file, similar to the ones used by docker-compose.
When deploying a stack, the user can monitor the running services and start/stop individua
services as needed, or stop the entire stack at once.

Some of the most valuable feature8 of a Docker swarm are: a) decentralized access, b)
increased security (because of the nature of intra-node communicationsg) load balancing, d)

scalability and e) roll-back in case the orchestrators need to revert tlirechanges in a previous
safe environment.

6.2.3 Kubernetes

Kubernetes is a platform for managing containerized workloads and servic8slt is portable,
extensible and open-source, thus providing a good way to bundle and run large-scale
applications. In a production environment, the orchestrator needs to manage the containers that
run the applications and ensure that there is no downtime. Kubernetes is able to pide: a)
service discovery and load balancing (containers are exposed using IP addresses), b) mariagy
and mounting storage systems, c) rollouts and rollbacks (automate change of caiber states),
d) resource management of containers (CPU and RAM), e) respawnir@pntainers that fail and
e) storing security information as secrets.

Kubernetes is organized in Nodes. A node may be a virtual or physical machine, dejykng on
the cluster. Each node is managed by the control plane and contains thesrices necessary to
run pods. Nodes contain information regarding the addresses that containers @sto
communicate, the condition of pods and the capacity. An example of a de specification is
shown below.

5 Docker swarm features https://www.simplilearn.com/tutorials/docker-tutorial/docker-swarnhast access June 2021.

70 Kubernetes, https://kubernetes.io/docs/concepts/overview/whais-kubernetes Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

"kind" : "Node",

"apiVersion" : "v1"

"metadata" : {
"name": "10.240.79.157"
"labels" :{

"name": "my-first- k8s- node"

}

}

}

As mentioned previously, Kubernetes runs your workload by placing containers into Podsrtm
on Nodes. Pods are the smallest deployable units of computing that you can creatnd
manage in Kubernetes. To be more specific, they are a group of one or mocentainers, which
share storage and network resources. Pods are organized in templates, such as the one below

apiVersion : batch/vl
kind : Job
metadata :
name hello
spec:
template :
This is the pod template
spec:
containers
- name hello
image: busybox
command['sh’ , '- c',
‘echo "Hello, Kubernetes!" && sleep 3600]
restartPolicy : OnFailure

6.2.4 Amazon EC2 Container Service (ECS

Amazon Elastic Container Service (Amazon ECS)is a container orchestration service
providing easy deployment, management and scaling up of large applications. The ¢amers

* Amazon ECS https://aws.amazon.com/ecs/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

are deployed in an AWS (Amazon Web Services) cloud cluster, allowing applicats to scale up
easily. It adopts a serverless architecture, where the computing resourseare automatically
allocated, so that the user does not need to deal with server cogfiration, reducing thus the
time needed for setting up a deployment. Amazon ECS provides a freedtri with full-features
available according to the available pricing schemes.

6.2.5 Apache MESOS

Apache MESOS? is a resource allocation and orchestration system for running applications on
computing clusters. MESOS allocates resources to distributed execution frameworlssich as
Hadoop™ and MPI4. The core part of MESOS is the master daemon, which manages
distributed agent daemons deployed on cluster nodeson which tasks are run according to the
MESOS framework used. The master daemon decides the number of computationakoairces
to offer to each framework, according to the selected allocatiopolicy (e.qg., fair sharing, strict
priority, etc.). The scheduler of the framework running the application can accept theffer and
select which of the resources to allocate to the tasks to run, passing thidlacation to MESOS,
which executes the tasks in the selected agents. MESOS can be used to rwontainerized
applications, using either Docker containers or container®f 0(626pV RZQ FRQWDLQHUL]
system.

6.2.6 Nomad

Nomad™ is an orchestration system that focuses on cluster management and scheduling,
aiming to reduce the complexity added with other types of features such as servickscovery
and monitoring offered by other orchestrator systems, such as Kubernetes. Nomarhn scale
up to thousands or millions of nodes and can run not only containerized applt@ns, but also
virtualized and standalone ones.

6.2.7 Comparison

The characteristics of the service composition tools presented in the previous sectiorsse
summarized and compared in Table 4. For ODIN, Docker-compose and Dockeswarm are
selected for container orchestration, with Kubernetes also being an alternative that can betsp
during the course of the project, if requirement analysis reveals that its functialities cover
better the needs of hospital deployments. The selection of these dts is based on the
combination of free distribution, ease of setup and configuration, ability to seato computing
clusters and wide community. The ease of setup of Docker-compose and Doekswarm make

2 Apache MESOS http://mesos.apache.org/Last access June 2021.

3 Apache Hadoop, https://hadoop.apache.org/Last access June 2021.

74 OpenMPI, https://www.open-mpi.org/Last access June 2021.

5 Nomad, https://www.nomadproject.io/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

them the first choice considered during the early phases of the project. Faimility of the
consortium members and the DevOps team with these tools is also a reason for their selection.

Table 4: Comparison of service composition tools.

Docker- Kubernetes

compose
Free yes yes yes no yes yes
Ease of setup high high low high low high
Resource allocation no yes yes yes yes yes
Scalability low medium high high high high
Built-in features low medium high high medium medium

6.3 ODIN guidelines

In ODIN, we will usedocker-compose for deploying components in the target environment. For
each deployable system of ODIN, the developers should create docker-compose.yml file
that describes how to compose the system from individual components, e.ca, web application
by composing a server, a database and a GUI. The docker-compose.ymilef will specify all
needed configuration for an application, which may include the Docker images to ejsports to
make available, environment variables, etc.

The docker-compose.yml ILOH ZLOO EH XSORDGHGiItLaly RserwatKldt SURMHF
https://qgitlab.odin-smarthospitals.ey and submitted to version control, similar to the source

code of the components. However, thedocker-compose.yml file will be stored in a different

repository than the one used for the source code. In general, there wilot be an one{o-one
correspondence between a component and a deployable system, since the system mde

composed of multiple components, hence thelocker-compose.yml will not correspond to a

single source code repository. For this reason, there will be a separatepository where all
docker-compose.yml files will be stored. The docker-compose files in this repository lalso

serve as a registry for all deployable services in ODIN.

To coordinate applications running in multiple computing node®ocker swarms will be used, at
least at the initial phases of the project. Composite applications MWbe deployed as Docker
stacks, specified in the corresponding docker-compose.yml files. The services the deployed
stacks will be monitored either through the command line interface, or through the Graphi
User Interface, as described in Section 7.4.

If during the course of the project, and through the analysis of the system and euser

requirements, it is decided that Docker swarms are not adequate for the criticality of the hospital

pilot site environment, container composition and orchestration may be switched Kubernetes,

which offers increased resilience for critical large-scale applications. This deasiwill be taken

ZLWKLQ WKH DFWLYLWLHV RI 7 WKURXJK FRRYGUOYDWURQD DB
any decisions will be recorded in relevant deliverables of WP4 or WP7.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

7 Operation monitoring and feedback
collection

During the operation phase, an application is being used by the end-users performints
specified functionality. The feedback collected by the end-users during this phasegarding the
operation of the software and any problems and issues that may arise from its usagevery
important for developers. Using this feedback, they can solve problematic behaviourr alter
the functionality of components in order to better satisfy user requirements.

Operation monitoring refers to the ability to manage a deployment, i.e., hawan overview of the
services that are running in the deployment, start/stop services as needed, vieversice logs,
update services to newer versions, etc. This type of monitoring can be achievesther through
the command line interface of the container orchestration tools (Docker swms, Kubernetes,
etc.) or, more popularly, through Graphical User Interfaces (GUIs) provided rfdhese tools.
Section 7.1 describes the available GUIs for monitoring deployments.

On top of these monitoring tools, data analytics tools can be applied to analyske service logs
and collect KPIs (Key Performance Indicators) that provide insight in the operatiofithe system
and problematic parts, and provide hints to the resolution of issues. Such tools are discussed
Section 7.2.

Collection of feedback from the operation of the pilot sites is alsgmportant in order to
understand if the system operates as expected, adhering to the system andger requirements.
Feedback collection mechanisms are discussed in Section 7.3, while a moextensive analysis
will be performed as part of T3.4 and reported in D3.7t ' Bechnical Support Plan and
Operationsr

7.1 Graphical User Interfaces (GUIs) for managing
deployments

The tools for container composition and deployment management described in Section 6
provide the means to manage the deployments, e.g., starting and stoppingervices, viewing
logs, etc. However, these functionalities are usually provided through the comme line, making

it hard for a user to have an overview. There are Graphical User InterfacéSUIs) available that
provide a comprehensive view of a deployment through a web interface, that grtly facilitate
the deployment monitoring. Some of the most popular ones are discussed below.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

7.1.1 Swarmpit

Swarmpit® is an open-source container management solution for monitoring and manag
Docker swarm installations. It provides features such as service deployment, semic
management, service discovery, shared access across multiple users and integion with
private Docker registries. A screenshot of Swarmpit can be seen in Figure 7.

Figure 7: Screenshot of the Swarmpit GUI.

7.1.2 Kubernetes dashboard

Kubernetes dashboard’ is the default dashboard of the Kubernetes orchestration framework. It
can be used to deploy an application on a Kubernetes dashboard, monitor its ofaion,
manage resources, scaling applications, starting pods, etc. A screenshot of thKubernetes
dashboard is shown in Figure 8.

6 Swarmpit, https://swarmpit.io/Last access June 2021.

77 Kubernetes dashboard https://kubernetes.io/docs/tasks/access-application-cluster/welsi-dashboard/ Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 8: Screenshot of the Kubernetes dashboard GUI.

7.1.3 OpenShift

5HG+DWpV 23d-h@6ritainevmanagement GUI for the Kubernetes orchestrator. It offers
several features, including automated installation and upgrades of the deplayepplications,
while focusing on security across the stack of deployed containers and through theetif/cle of
an application. A screenshot of OpenShift can be seen in Figure 9.

8 RedHat OpenShift https://www.openshift.com/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 9: Screenshot of the OpenShift GUI.

7.1.4 Portainer

Portainer® is an open-source container management tool that can be used to monitor
applications deployed using Docker, Docker swarm, Kubernetes, and other otainer
orchestration frameworks. It can be used to deploy applications and view theitatus, providing
secure access to authorized users. A screenshot of Portainer can be seen in Figut®.

 Portainer, https://www.portainer.io/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 10: Screenshot of the Portainer GUI.

7.1.5 Comparison

The characteristics of the deployment management GUIs presented in the previossctions are
summarized and compared in Table 5. All GUIs offer a wealth of featsr for deployment
monitoring and management, so the decision of the one to use is mostly based oredr
DYDLODELOLW\ WKH NLQGV RI RUFKHVWUDWRUV WXFKRUWDB G
partners. Portainer is selected to be used in ODIN, since it can work thi several types of
orchestrators, including Docker swarm and Kubernetes, which will be used in ODIN.

Table 5: Comparison of deployment management GUIs.

Swarmpit Kubernetes OpenShift Portainer

dashboard

Open-source yes yes no yes

Docker, Docker

Supported Docker

orchestrators swarm Kubernetes Kubernetes swarm,
Kubernetes, etc.

Built-in features high high high high

7.2 Operation monitoring KPIs

Despite the capabilities of the system management tools (as described ire&ion 7.1), which
already are capable of monitoring many container-wide and system-wide metricere will be
the need to monitor some specific KPIs of the platform and services running on top watiwill
not be covered by these tools. Task 4.6 will tackle this need from a resourgerspective, trying
to bridge technology and management monitoring.

Version 1.0 | 2021-06-30 | ODIN ©

L

Deliverable D3.1 t Operational framework

From a functional perspective, monitoring all KPIs, including container-wide arsgstem-wide,
as well as service-specific and business metrics, is extremely important. It is the only way
determine if the system is running as it should, analysing any problems, auditing anthking
data-driven decisions at all levels. Additionally, the unification of theseetrics into a single
process will aid in the monitoring, reporting and analysis process, by providing peextive and
context as well as extended services, such as anomaly detection, preventiveedis, corrective
action proposal, and support requesting, among many other.

There are many existing open source system monitoring tools. There are ertble concepts
such as using InfluxDB for storing generic time series; or Promethel$ which also offers
different access modes, queries for data and alerting. These tools offentegration with many
other different sources and platforms such as the popular dashboard Grafaffa Other
monitoring systems offer a more oubf-the-box experience, like Nagio® or Zabbix*, however
they are more system centric and less flexible.

Another important aspect of monitoring is log management. There are manypen source
centralization, parsing and processing systems, including the following:

x Elastic Stack®, commonly abbreviated as ELK for Elasticsearch, Logstash, and Kibana
x Graylogf®

X Fluentd”

X NXlog?®

They are all extremely configurable and adaptable, particularly to containerizeshvironments.
Most offer additional features for searching within logs, linking different gproviding anomaly
detection, as well as parsing for further metric extraction.

It should be noted that the KPI collection tools described above areotlimited to the DevOps
pipelines. The same tools can and will be used for the ODIN platform as a wholMore detailed

80 InfluxDB, https://www.influxdata.com/Last access June 2021.

81 Prometheus, https://prometheus.io/Last access June 2021.

82 Grafana, https://grafana.com/Last access June 2021.

83 Nagios, https://www.nagios.org/Last access June 2021.

84 Zabbix, https://www.zabbix.com/Last access June 2021.

8 Elastic Stack,https://www.elastic.co/Last access June 2021.

86 Graylog, https://www.graylog.org/Last access June 2021.

87 Fluentd, https://www.fluentd.org/Last access June 2021.

88 NXlog, https://nxlog.co/ Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

descriptions of the available options and selected tools will be provided the deliverables of
WP3 and WP7, regarding the ODIN platform and the KPI evolution, respectively.

7.3 Collecting feedback from pilot sites

An important part of the operation procedures is the collection of feedback relation to the
incidence management. All the procedures addressing the management of isssiebugs or
requests will be fully specified in T3.4 and reported in the corresponding deliverables.

One of the goals of the task will be to work as closely as possible the real-life operation, as
such, we are proposing to take as basis the ITIL v4 framework, which describe aperative
model for the delivery of technological services and products.

In its new version it reflects recent trends in software development and IT operat® and

includes advice on how to apply philosophies such as Agile, DevOps and Leantive domain of

service management. This new, more flexible version of ITIL has a more holistigproach to

service management and focuses on "ende-end service management, that is, from demand to
value." Although it contains a total of 34 practices (14 general managnent practices, 17

service management practices and 3 technical management practices) in this caseewvill only

apply Service management practices:

X Service desk: The purpose of this practice is to capture the demand for resolutiorf o
incidents and service requests. It should also be the entry point and single point of
contact for the service provider with all its users.

x Incident management: The purpose of the incident management practice is to minimize
the negative impact of incidents by restoring normal service operation as quickly as
possible.

X Service request management: The purpose of the service request management praaic
is to support the agreed quality of a service by handling all predefined and usimitiated
service requests in an effective and user-friendly manner.

There are multiple tools to implement the procedures that will be defined to providaipport to

WKH SLORWVp VLWHY GXULQJ WKH GHSOR\PHQW DQ® RIHODWLR
be made in T3.4 according to the analysis of requirements that are being gattesl from the

different stakeholders. An initial identification and comparison of featwweof tools for service

desk management is provided below.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

7.3.1 Faveo Helpdesk

Faved® is a free web-based ticketing system build on the Laravel framework, it provile
businesses with an automated help desk system. It was released as open-source sadre
under the OSL-3.0 license.

Its main features include the seamless email integration, notification managent, email and in-
app notification, integrated with multiple platforms and customizable.

Figure 11: Screenshot of the Faveo Helpdesk GUI.

7.3.2 Handesk

Handesk® is a modular self-hosted powerful ticketing system, it provides with multipteams,
multiple users, easy and efficient reporting. It supports multi-language, emaitegration, in-app
notificacion and reporting. It has been released as an open-source solution under MIT hee.

8 hitps://www.faveohelpdesk.com/Last access June 2021

9 http://handesk.io/ Last access June 2021

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 12: Screenshot of the Handesk GUI.

7.3.3 Jira Service Desk

Jira Service Management! is a collaborative IT service management (ITSM) solution that
enables to create multiple projects to track and handle customer support requests and
incidents. It comprises features to provide request management, incident management, afnge
management, asset management and knowledge management among others. It can self-
hosted or cloud based and has a free plan for up to 3 agents. It also allows rtiple integrations
through its REST API and open platform.

9 https://www.atlassian.com/software/jira/service-managemeritast access June 2021

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 13: Screenshot of the Jira Service Desk GUI.

7.3.4 Trudesk

Trudesk? is a complete self-hosted open-source solution for a help desk built with Ne.JS and
MongoDB. It has real-time tickets and updates, multiplatform design, live support chan-app
notification and email integration. Trudesk is licensed under the Apache License, Versiaf.

92 https://trudesk.io/ Last access June 2021

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 14: Screenshot of the Trudesk GUI.

7.3.5 UVDesk

UVdesk® is a free open-source helpdesk ticket system, released as open-source $afire
under MIT License. It is highly customizable and provides knowledge base, integrati@rith
email and workflow capabilities.

% https://www.uvdesk.com/en/opensourcel ast access June 2021

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 15: Screenshot of the UVDesk GUI.

7.3.6 Zoho Desk

Zoho DesK* is a cloud-based help desk software that allows to provide context-drivesupport.

It provides comprehensive features and workflows for ticket management, assignment,
categorization, prioritization, escalation, and more. It also features a kntedge base for ticket
deflection through self-service, as well as easte-use dashboards to track quality metrics such
as customer satisfaction and overall team performance.

9 https://www.zoho.com/desk/Last access June 2021

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 16: Screenshot of the Zoho Desk GUI.

7.3.7 Comparison

The characteristics of the tools for help desk presented in the previous sectionseasummarized
and compared in Table 6. All tools offer appropriate features for supping the collection of
feedback from pilot sites, so the decision of the one to use will be mostly $&d on free
availability, and the easiness to integrate with the rest of DevOps tools. Furthenalysis and the
final choice will be done in T3.4 and reported in the corresponding deliverables.

Table 6: Comparison of Help Desk tools.

Faveo Handesk Trudesk Uvdesk Zoho Desk
Helpdesk
License OSL 3.0 MIT Proprietary Apache 2.0 MIT Proprietary
Ease of Use
& set up +++ +++ ++ ++++ +++ ++
Built-in features +++ ++++ ++++ ++++ ++++ ++++
Integration +++ +++ ++++ +++ +++ ++++
. Self-host / Self-host / Self-host / Self-host /
Hosting SaaS SaaS Saas SaaS SaaS Saas
Security +++ +++ +++ +++ +++ ++

Version 1.0 1 2021-06-30 | ODIN©

Deliverable D3.1 t Operational framework

7.4 ODIN guidelines

In ODIN, we will usePortainer, to manage the deployed services. Portainer will be available
through the following URL.:

https://portainer.odin-smarthospitals.eu

Portainer will be used to deploy applications, monitor their operation, vielegs, start/stop
services, etc. Access to the deployment managers of the pilot sites will be prided as soon as
Portainer is installed in the pilot sites. Prior to that, Portainer will be availabletést deployments
GHSOR\HG LQ 2',1pV WHVWLQJ L4BUDVWUXFWXUH VHH 6HFWLRQ

Module developers should always document possiblenonitoring metrics of their modules.
Whether these are front end reports, APl endpoints, if they are actiyeteported, if they need
further compilation from other sources (e.g. extraction from logs) or thugh any other
mechanisms. Developers should also provide threshold information about these tries, e.g. if
metric X gets above/below Y then do Z; including failure hypothesis, possilderrective actions
and tests.

Module developers should ensure all logs are reported to the standard outpuf the container,
this way they can automatically be collected by the platform and centralized rfdurther
processing.

Feedback from the operation of the deployed components will be collesd from the pilot sites
using a reporting and ticketing system such as the ones presented in Section 7.3. The exact
tool to use and the guidelines for feedback reporting will be decided through thectivities of
T3.4 and will be provided to the developers through deliverables D3.7- dechnical Support
Plan and Operationsr

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

8 Pipeline orchestration

Sections 2 to 7 described the individual steps needed to establish a continuous workflow from
the developer on one end to the end-user (pilot site) on the other end. The specific tools
presented provide mechanisms to facilitate the fulfilment of each step. The final piece is to
orchestrate the whole pipeline in a (semi-)automatic manner. This allows a change in the source
code, e.g., a bug fix or a new functionality, to be automatically propagated all tiveay down to

the end-user. This section describes the tools that will be used to automate the executiontbé
whole DevOps pipeline in ODIN.

8.1 Tools for CI/CD

This section describes some of the most used available tools for pipeline automation.

8.1.1 Jenkins

Jenkins® is an open-source automation server that is used to automatically bdiend deploy
projects. Jenkins is used to define a pipeline of steps to be taken in adto build, test and
deliver a software component, and can execute it automatically when aew version of the
software is available in the source code versioning system used. In this wayoffers continuous
delivery of software.

The definition of a pipeline is provided by the developer in a textual forrm a file named
Jenkinsfile . The Jenkinsfile uses a user-friendly domain-specific language (DSL) to
describe all the steps needed to perform the continuous delivery pipelin@he fact that the
pipeline description is provided as a text file allows it to be committedd source code versioning
tools along with the source code of the application, making it easy to maintain, updaamd use
by developers.

The top-level concept of aJenkinsfile is the Pipeline , which contains the description of a
complete DevOps pipeline A Pipeline consists of the following main parts:

x Node: A node is a machine on which the pipeline, or a part of it, will bexecuted.
Jenkins supports several types of nodes, such as physical machines, virtual ntaces,
Docker containers Kubernetes nodes, etc.

X Stage: A stage is a conceptually distinct part of the pipeline, containingset of steps to
perform a particular sub-goal of the whole pipeline. A stage may represertg. the
building phase, the testing phase, the deployment phase, etc.

X Step: A step is the basic element of a pipeline, representing a single task perform. A
step may e.g. run a shell command to build the source code, or calltesting framework

% Jenkins, https://www.jenkins.io/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

to test the built software. Jenkins provides a set of core types of stepwhich is further
extended with plugins to support a wide variety of available build/ted&ployment
frameworks.

An example Jenkinsfile can be seen belo:

pipeline {
agent any
stages {
stage ('Build") {
steps {
sh 'make'
}
}

stage ('Test')
steps {
sh 'make check'
junit ‘reports/**/* xml'

}

}
stage ('Deploy’){
steps {
sh 'make publish'

}
}
}

The pipeline description contains two sections: the agent definition, which specifiagich node
the pipeline will run on (here any existing node), and the stages descriptioiithere are three
stages defined:

X 7KH q%XLOGr VWDJH 7KHUH LV RQO\ RQH VWHS LQ WKLV "'
command to build the source code.

X 7KH q7HVWr VWDJH 7KHUH [RgeHon® BHRuVarshe$ voninGaniVakd. vV vV W
another to call the JUnit testing framework, in order to test the built software.

9% Example modified fromhttps://www.jenkins.io/doc/book/pipelinelast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

x 7KH g'HSOR\r VWDJH 7KHUH LV RQH VWHS LQ WKLV VWDJF
software at an appropriate location.

There is a rich set of configuration options and step plugins at the disposal tife developer,
allowing them to define a wide variety of workflows. Theeader may find online relevant
reference for the Jenkinsfile syntax and the available options and step&.

8.1.2 CircleCl

CircleCF® is a popular CI/CD tool that facilitates automation of a complete CI/CD piliee.
Similar to Jenkins, the definition of a workflow is specified in a textuakficommonly named
config.yml , which can be subject to version control along with the source code.

CircleCl is directly integrated with Docker to provide isolated executionn@ironments for the

CI/CD steps. In contrast to Jenkins, in which the functionality of the steps is provided by plugi

CircleClI provides building and testing functionalities as part of its core, reléimg in a more
XQLILHG HQYLURQPHQW ORUHRYHU &LUFDKIEKSDEMLGHXVWEA HV
sharable packages of configuration options for common steps and projects, e.fpr installing a

Node.js server or pushing images to cloud services. CircleCl also directly integratewith

Bitbucket, GitHub, and GitHub Enterprise. To use the full functionalities of CircleCl,aus need

to pay a corresponding fee.

CircleCl uses a YAML format for the description of the CI/CD workflows. Aaxample
config.yml file is the following™.

97 Jenkins pipeline syntaxhttps://www.jenkins.io/doc/book/pipeline/syntaxlast access June 2021.

% Jenkins pipeline stepshttps://www.jenkins.io/doc/pipeline/stepsi_ast access June 2021.

9 CircleCl, https://circleci.com/ Last access June 2021.

100 Example modified fromhttps://circleci.com/docs/2.0/sample-config/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

version : 2.1

Define the jobs we want to run for this project

jobs :
build :
docker :
- image: circleci/<language>:<version TAG>
auth :
username: mydockerhub -user
password : $SDOCKERHUB_PASSWORD
steps :
- checkout
- run:echo "this is the build job"
test :
docker :
- Image: circleci/<language>:<version TAG>
auth :
username: mydockerhub -user
password: $DOCKERHUB_PASSWORD
steps :

- checkout
- run:echo "thisis the test job"

Orchestrate our job run sequence
workflows :
build_and_test
jobs :
- build
- test

7KH ILOH ILUVW GHILQHYV WKH W\SHV RI MREWKMKDWXZOGO® B G
gWHVWr MREV DQG KRZ HDFK LV H[HFXWH GD @G WHH. B/IVOH SW KWMR' |
Then, the file defines the workflow, i.e. the order in which the jobs shdube performed, here

ILUVW WKH gEXLOGr MRE DQG WKHQ WKH gWHVWr MRE

8.1.3 TeamCity

TeamCity®* is a comprehensive solution for CI/CD that allows the specification and
management of a CI/CD pipeline through a graphical interface. It integratewith popular
building tools such as Maven, NPM and Gradle (see Section 3.1) and facilést the

101 TeamCity, https://www.jetbrains.com/teamcity/L ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

management of build and testing steps through the GUI. It provides analysis ofléaés and
visualizations of pipelines that make it easier for the developer to specind monitor the
pipeline. In addition to the visual interface, TeamCity allows the specification tife CI/CD

pipeline as a script using the Kotlin language. A screenshot of the TeamCity tde shown in
Figure 17.

Figure 17: Screenshot of the TeamCity CI/CD tool.

8.1.4 Bamboo

Bamboo'® is a CI/CD GUI for constructing build and testing pipelines. It supports muttiage
build plans, which can be executed upon source code commit, through the setup of approate
triggers, as well as automated test runs. A screenshot of Bamboo is shown in Figui8.

102 Bamboo, https://www.atlassian.com/software/bambod_ ast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Figure 18: Screenshot of the Bamboo CI/CD tool.

8.1.5 GitLab

GitLab, the Git-based source code versioning tool, provides its own CI/CD mechanis#?® that
can be employed by developers to setup pipelines to run upon source code cominand push.
GitLab pipelines are written in a YAML and can support multiple types of pipelines, such as
directed acyclic graphs and parent-child pipelines. Pipelines support building, testingna
production stages. GitLab also supports Auto DevO@$*, which automatically creates CI/CD
pipelines by analysing the source code of the repository and creating appropriate kirules. An
example GitLab YAML file can be seen below.

103 Gitlab CI/CD,https://docs.gitlab.com/ee/ci/Last access June 2021.

104 GitLab Auto DevOps,https://docs.gitlab.com/ee/topics/autodevops/index.htmLast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

stages :
- build
- test
- deploy

image: alpine

build_a :
stage : build
script
- echo "This job builds something."

test a :
stage : test
needs: [build_a]
script
- echo "This job tests something."

deploy_a :
stage : deploy
needs: [test_a]
script
- echo "This job deploys something."

8.1.6 Comparison

The characteristics of the CI/CD pipeline orchestration tools presented in the previogsctions
are summarized and compared inTable 7. In ODIN, Jenkins has been selected as the CI/CD
tool. Although the built-in set of its features is limited, it provides extensivieinctionalities
through a wealth of available plugins. Furthermore, it allows the specifiaati of the pipeline as a
script that can be submitted to version control. Jenkins is supported by a wide community and is
quite familiar to the technical members of the consortium, which are also asons for its
selection.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Table 7: Comparison of CI/CD pipeline orchestration tools.

Jenkins CircleCi GitLab
Open source Yes No No No No
Ease of Use
& set up Medium Medium Medium Medium Medium
Built-in features 3/5 4/5 4/5 4/5 4/5
Integration Very Good Medium Good Medium Good

On premise &

. On premise & On premise . . On premise
Hosting Cloud & Cloud On premise Bitbucker as & Cloud
Cloud
Free Version Yes Yes Yes Yes Yes

8.2 ODIN guidelines

In ODIN, we will useJenkins for CI/CD automation. A Jenkins pipeline will ideally consist of the
following stages:

X Building, using build automation tools such as the ones described in Section 3.1;

x Testing, specifying both unit and integration tests, where applicable, as describad
Section 4;

x Containerization, running the appropriate Docker commands to build component
images, according the provided Dockerfiles, as described in Section 3.2;

X 5HOHDVLQJ FRPSRQHQWYV WR 2',1pV '"RFNHU54HJLVWU\ DV Gl

x Deploying applications to the pilot sites, according to the specification of the ailable
docker-compose.yml files, as described in Section 6.3;

The Jenkins pipeline will be triggered upon pushing a new version of the soarcode of a
FRPSRQHQW WR 2',1pV VRXUFH FR@HaselL ¥ /dpElind) FaiIRVIh&WRULHV
developers and the DevOps team will be notified in order to proceed to the appropriaéetions.

The specification of the CI/CD pipeline for a particular application of ODIN wik written in a
-HQNLQVILOH ZKLFK ZLOO EGitLabXda Rérgiow EbGirolV Fhe 2vriting Vand
management of the Jenkinsfiles of all ODIN services will be under thresponsibility of the

DevOps team. The DevOps team, in coordination with component developers and qtilsite
GHSOR\PHQW DGPLQLVWUDWRUYV ZLOO FRPSRVH WRH2:-HEMLQVII
GitLab. A separate repository will be devoted for the Jenkinsfiles, vehi will be managed by the

DevOps team.

The available Jenkins files will also be managed through the Jenkins serv Access to this
server will be provided to the DevOps team, as well as to development teams, as needed.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

9 Horizontal services

This section covers services that span the whole DevOps infrastructure horizontallyhese
include the security infrastructure for DevOps, component documentation, the DevOps home
page providing access to all services, and the approaches to ensure high quality thighwout the
DevOps pipeline.

9.1 Security mechanisms for DevOps

This section describes the security mechanisms used to ensure that the DevOps infrastrucd
of ODIN is used only by authorized users within the consortium. The DevOps infrastruaus
different from the ODIN Platform (which will be better analysed in much more depithh D3.4),
being restricted to project members and community that will be working on the developmieof
the different aspects of the ODIN technology.

As such, the security mechanisms need only to protect the development process and its results.
This means ensuring only trusted entities can view (download, read), update (modifyrite) or
execute the following assets produced by ODIN:

X Source code, especially critical code-base

X Binaries, including libraries and images

X Pipeline configuration, execution, logs, and results

x Documentation, particularly sensitive specifications and reports

X Support and tickets

X Testing infrastructure

x DevOps infrastructures and secrets (e.g. access keys to other services)

The access to these assets must be restricted, at least during the run dtiie project. As such,
each of these assets must be configured with access control mechanisms,nty authorising
trusted entities to them. These entities must be authenticated so they can claim their trudte
status.

All these assets also need to be verifiable, i.e. trusted entities should béla to trust that the
integrity of these assets has not been compromised by possible third parties, im attempt to
disrupt or gain access to the development process.

Finally access to all these assets must be confidential. All communicationstieen the trusted
entities and the asset repositories or infrastructure must be encrypted, so as ntt disclose
critical aspects of the development or its process. Of course, once the trusted entity has access

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

to these assets, they are trusted not to share, inadvertently or otherwis¢hese assets with
other non-trusted (or even trusted) entities; and inform if they do.

9.1.1 Single Sign On and Authorisation service: Keycloak

Keycloak® is an open source tool which manages cloud authentication and authorisation.
Centralizzd authentication means that all trusted entities can be registered in a single point,
offered as Single Sign-On (SSO), to access the different services, without the risk obrfusing
entities or human error. Keycloak is also capable of loading its user bagern different systems,
effectively federating user identity, even though common identity providersuch as Google,
Facebook, GtHub, or Twitter.

All DevOps infrastructure services can connect with Keycloak authentication using OpenlID
connect, SAML 2.0 or OAuth 2.0; all very common authentication and authorisation
mechanisms. Keycloak manages roles for all users, so that the services can enforce these roles,
but Keycloak can go beyond role-based access control and also implemergbmplex access
control policies.

9.1.2 Public Key Infrastructure: SKSkeyserver & Docker notary server

Anyone can create a privaée-public key pair, however trust must be built and the public key
disseminated in order for the encryption to be effective, or signature to bealidated. To aid in
this, a Public Key Infrastructure (PKI) needs to be implemented, which will take cacf
distributing public keys as well as maintaining the trust chain in these keys. OpenPGP (RFC
4880) is a de facto standard for email encryption and signing; this is why is also used for
digital signing of Git commit&® as well as for signing packages for building automation tools.
For OpenPGP, the standard PKI is built upon a web of servers known ksyservers which are
queried for exchanging keys. The most common keyserver is SKG but there are alternatives
such as Skiet®. In both cases, a web interface is used to upload public keys, which caoe
restricted to trusted entities (using access control provided by Keycloak).

As with any type of content, Docker images may be transmitted securely thrgh Transport
Later Security (TLS), however this does not guarantee that the content it§ehas not been
tampered with. Docker Content Trust uses a public-private key schema to allatlve signing and
verification of Docker image&™. However, the last update (as of June 2021) of Docker Contén

105 Keycloak, https://www.keycloak.org/Last access June 2021.

106 Git signing tools,https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Workast access June 2021.

107 SKS Keyserver https://github.com/SKS-Keyserver/sks-keyserverast access June 2021.

108 Skier, https://github.com/SkierPGP/SkielLast access June 2021.

109 Docker trust, https://docs.docker.com/engine/security/trust/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Trust was the 10" of April of 2018, rendering it insecure. There are two alternatives: Skop&°
which could be used to sign Docker images with OpenPGP keys, and CodeNotatywhich has
its own system for signing Docker images. At the moment none of the two are definitive.

9.1.3 Transport Layer Security: X509 certification

All DevOps infrastructure services are accessed through HTTP, which can be protected
through Transport Later Security (TLS) or commonly known as HTTPS. In order to achiewve s
x509 certificates have to be installed and configured so that the HTTRs&rver presents them to
the client browser. However, the client will not trust this connection unless the d#icate is
signed by any of a trusted set of Certificate Authorities (CA), or unless a cimeof trust (other CA
whose certificate are signed by CA) with these trusted CA can be vidied. Thus, it is imperative
that the installed certificate is verifiable this way.

Fortunately initiatives such as &t g encrypt’?, provide a free and secure service through the
use of the ACME protocol. Most of the tools used for DevOps alreadynplement the ACME
protocol to obtain a valid x509 certificate. If not, the Certbot to6f can be used (and
automated) to obtain valid certificates.

9.1.4 ODIN guidcelines

A Keycloak instance will be deployed in the DevOps infrastructure, allowing users to mage
their credentials, and other tools to interoperate with it in the following URL.:

https://account.odin-smarthospitals.eu

A SKS keyserver will be deployed, allowing only valid Keycloak usdmsupload OpenPGP keys
(query and download of keys will be public) in the following URL:

https://sks.odin-smarthospitals.eu

The ODIN DevOps security infrastructure will include at least the user roles dable 8. An
individual user may have more than one role. Depending on the user role, the DevOpsnhe
page (see Section 9.3) will be adapted to offer links to the accessibleprers.

110 Skopeo, https://github.com/containers/skopeol ast access June 2021.

111 CodeNotary, https://www.codenotary.com/Last access June 2021.

112 _etsencrypt, https://letsencrypt.org/ Last access June 2021.

113 Certbot, https://certbot.eff.org/ Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Table 8: ODIN DevOps user roles.

Role Accessible DevOps infrastructure ‘
DevOps manager All

Developer Gitlab, Docker registry

Tester Docker registry, Portainer, Docker swarm, Kubernetes, testing infrastructuye

operation monitoring, ticketing

Deployer Portainer, Docker swarm, Kubernetes, operation monitoring, ticketing

Pipeline manager Jenkins

Security administrator Keycloak, SKS

Third-party (e.g. open GitLab, Docker registry, Portainer, Docker swarm, Kubernetes, operatiol
caller) monitoring, ticketing

All DevOps services (see 0) will be encrypted using valid x509 certificates. Trusteentities
(developers, pipelines, partners, etg will be encouraged to follow common sense security
policies:

x Credentials, certificates, and keypairs are personal and untransferable.
X Sensitive information should never be shared with third parties.

X Sensitive information should never be published (in online comments, commits,
pipelines, Docker images nor any other kind of content unless it is properly secured).

A breach of these conditions should immediately be reported to ODIN DevOps manageia a
ticketing system in order to properly mitigate the security risks.

In order to maintain integrity, all Git tags should be signed by any membaxgistered in the SKS
keyserver. The signature will cover the tag content as well as alltieer previous commits.
Signatories are encouraged to verify and validate all, especially the security considecats.

Integrity should also be maintained for binaries and Docker images. The Intetjm Manager
will verify that all stable releases, including Git tags, Docker images andhya other persistent
content, are appropriately signed before releasing.

9.2 Documentation

Documentation of the developed components, systems and their interactions isyportant to
facilitate the use of components by other developers or by the same dewgler at later stages.
Component documentation runs in parallel to component development and deployment,
documenting the functionality of the components, and providing instructions for their tadlation
and use.

In ODIN, a knowledge base will be created to hold all documentation ragling the developed
components, in the form of a wiki that will be constantly be updated durinidpe course of the
project as new components are made available or existing ones are updatedPart of this
documentation will be created as part of the source code itself, making asof per-language
documentation frameworks (see related guidelines in Section 24The implementation of the
ODIN knowledge base and of the full set of guidelines regarding component damentation is

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

part of the activities of T3.4 and will be reported in more details in dedirables D3.7 t D3.9
(Jechnical Support Plan and Operations ,Q WKLV VHFWLRQ WKHVH DVSHFWV DL
completeness.

9.2.1 ODIN Krowledge Base

Knowledge management is an important aspect applicable to all stages of theelOps cycle.

According to ITIL 4 gNQRZOHGJH PDQDJHPHQW DLPV WR HQVXUH WKDW
information, in the proper format, at the right level, and at the correct time,caording to their

access level and other relevant policies. This requires a procedure for thacquisition of

knowledge, including the development, capturing, and harvesting of unstructurekihowledge,

whether it is formal and documented or infformalandVDFLW N®RZOHGJIHT

This will be relevant to all type of stakeholders, from developers) integrators, deployers and
pilot site members, as well as end-users, and in order to be successful, it né® to be
connected to their workflows, to enable a rich information architecture, ancreate consumable
documentation for all stakeholders.

Knowledge is one of the project most valuable assets and open knowledgeasing will help all
stakeholders to collaborate, create value and foster innovation around ODI@§jbals. In practical
terms, ODIN will define and collect all needed data and information and aggate it in a single
self-serve online library wiki, available to all stakeholders through the DevOps lamglipage.

The information architecture and type of content for the knowledge base Wie further define in
T3.4 and reported in the corresponding deliverables.

9.2.2 Component documentation

Documentation issues are as vital to the success of any project as the ceditself''®. In
particular, source code documentation has always been a topic that generatemuch debate
and opposing opinions. However, today there is a very strong current of ofim stating that it is
more important that developers follow good practices, coding standards, princigesuch as
"Clean Code" (use self-describing function / class names, that variables hamames that are
readable and that we don't have to think too much to know what is happem), in short, that
they program in such a way that their code does not need to be commented. eetimes the
necessary documentation is minimum and sometimes the unit tests themselves giveeth
enough information for another developer to understand the code snippet.

Within T3.4, a common strategy for documentation will be established in tatboration with the
develoSHUVp WHDPV WR UHDFK DQ DJUHHPHQW DERXvake&/tkeH SXUSR\
code readable by other programmers, to make the code usable, etc.). Theogl will be to

14 TIL 4 Foundation, 5.1.4, Knowledge managemenfxelos. https://www.axelos.com/store/book/itil-foundation-itil-4-edition

115 https://www.itpro.co.uk/606693/the-needto-know-documentationin-linux

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

establish a series of basic principles and then define the processes and fllyathe tools to use,
as different components may require different types of documentation (i.e. APl documation,
Al service documentation, etc.).

Although manual documentation will always be needed, there exist quite a numbef tools that
enable automatizing part of the process. Tools like Swashbucklé or NSwag!'’ can generate
automatically Swagger documents based on the existing code. DocFX can generate API
and/or Markdown files based documentation, as well as GhostD&€ can generate and validate
XML comments and create help files automatically.

9.3 DevOps home page

In order for the DevOps manager and the developers/deployers to handle all DevOpsrsices,

D FHQWUDOL]HG 'HY2SV KRPH SDJH ZLOO EH XVHGI\DW WRgDOQC
services. The purpose of this home page is to provide access to the different g% of services

and to manage user authentication.

Landing pages can be implemented in an ad-hoc manner, as a separate componemt,oviding
a higher layer above several other GUIs. However, there are existing tools that cprovide such
functionality outof-the-box. Organizf?® is such a tool. It can be used to organize multiple
services within the same screen, e.g., by putting them in different tabs or sidmrside.
Moreover, it can be used to provide user access to specific tabs, a featurdat can be used to
design custom landing pages according to the type of user that logs in, providing @ifént sets
of functionalities.

The ODIN DevOps homepage will be available at the following URL:

https://dev.odin-smarthospitals.eu

It will provide access to the following DevOps setrvices:

x GitLab, for source code management, along with separate parts for deployment
configurations and Jenkins pipelines

x Docker registry, for viewing and managing2',1pV 'RFNHU UHJLVWU\

x Testing infrastructure, for testing the developed components

116 https://www.c-sharpcorner.com/article/swashbuckle-andasp-net-core/
17 https://github.com/RicoSuter/NSwag

118 https://dotnet.github.io/docfx/

19 https://submain.com/ghostdoc/

120 Organizr, https://organizr.app/Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

x Portainer, with corresponding Docker swarm / Kubernetes servers, for deployme
monitoring

X KPI collection tool, for viewing and analysing monitored KPIs

x Feedback collection and ticketing tools, for collecting feedkzk from the pilot sites in the
form of bug reports and other documents.

x Jenkins server, for DevOps pipeline construction and management
X Keycloak server, for security management
x ODIN knowledge base, for component and service documentation

Depending on the role of the authorized user (see Table 8), different subset$ the above
services will be available through the DevOps homepage. The exact URLs oktlanding page
and all the sub-GUIs will be disseminated to the project partners once tterresponding tools
are up and running.

Apart from providing access to the above listed services, the DevOps home pageill also
provide guidelines for the use of these services by developers, deployersich managers. For
each type of service, it will provide links to the corresponding guidelines, agported in this
GHOLYHUDEOH ZKLFK ZLOO EH DYDLODEOH WKURXJK WKH SURME

A detailed list of all DevOps services that will be available through thi2zevOps homepage, with
links to the associated guidelines, can be found i@O.

9.4 DevOps quality assurance

DevOps is designed for a continuous monitoring of development, testing and deplogmt
activities. If these activities are carried out following best practices in standardiion and well
known Git patterrs, a high product quality can be assured.

In the case of standards, the ISO 9000 family* defined a set of international standards on
guality management and quality assurance. They are not specific to any one industagd can

be applied to organizations of any size. Within ISO 9000, the ISO 90%¥4 standard sets out the
criteria for a quality management system and is the only standard in the family thaén be

certified to (although this is not a requirement). It can be used byng organization, large or
small, regardless of its field of activity. In fact, there are ev one million companies and
organizations in over 170 countries certified to ISO 9001.

121 |ISO 9000 family standard https://www.iso.org/iso9001-quality-management.htmiLast access June 2021.

122 1S0O 9001, https://www.iso.org/standard/62085.htmlLast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

The structure of ISO 9001 is divided into ten sections. The first three are introductoryhike the
last seven contain the requirements relating to the Quality Management SysterBelow is a
summary of the seven main sections:

X

Section 4: Context of the organization - This section talks about the requirementsr fo
understanding the organization in order to implement a Quality Management System
(QMS). 1t includes the requirements for identifying internal and external problems,
identifying stakeholders and their expectations, defining the purpose of the QMS @n

identifying the processes and how they interact.

Section 5: Leadership - The leadership requirements concern the need for top
management to be instrumental in the implementation of the QMS. Top Managent
must demonstrate commitment to the QMS by ensuring customer attention, defining
and communicating the quality policy and assigning roles and responsibilitiestin the
organization.

Section 6: Planning - Top Management must also plan the ongoing operation of the
QMS. It is necessary to evaluate the risks and opportunities of the QMS within the
organization and the objectives for quality improvement and plans to achieve these
objectives must be identified.

Section 7: Support - The support section concerns the management of all resources
related to the QMS and illustrates the need to control all resources, including huma
resources, buildings and infrastructures, work environment, monitoring resources and
organizational measurement and knowledge. The section also includes requirements
relating to the competence, awareness, communication and control of @omented
information (the documents and records required for the processes).

Section 8: Operation - Operational requirements cover all aspects of planningnd
creating the product or service. This section contains requirements related to planning
reviewing product requirements, designing, auditing external suppliers, creating, and
distributing the product or service, and checking for non-compliant process results.

Section 9: Performance Evaluation - This section includes the requirements necesg
to ensure that you can monitor the proper functioning of your QMS. These requiremsn
include process monitoring and measurement, customer satisfaction assessment,
internal audits and management review of the QMS.

Section 10: Improvement - This last section includes the requirements necessaty
improve your QMS over time. This includes the need to assess process nhon-
conformities and the adoption of corrective actions related to processes.

These sections are based on a PDCA (Plabo-Check-Act) cycle, which uses these elements to
implement change within the organization's processes, in order to stimulate and mtiim
improvements within the processes.

In ODIN, the DevOps guidelines presented in the corresponding sub-sections in ateps of the
DevOps workflow (Sections 2 to 9) are meant to be followed in ordeo ensure that a high level
of quality is achieved in the development, delivery and deployment of the ODBémponents.
The guidelines are based on best practices in each corresponding area. Fmding these
guidelines will ensure that all ODIN partners have a common understandirond framework for
component development and sharing, thus facilitating the development prodere and
minimizing problems during component delivery and maintenance.

Certain parts of the DevOps workflow can be formalized enough thatutomatic tests can be
developed to check if the corresponding guidelines are followed. Suchutomatic tests will be

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

used whenever possible, to ensure high quality delivered products. In casleat automatic tests
are not possible, manual checks or appropriate design principles will be used to ensuthat the
guidelines are followed and to facilitate the production of high quality results.

A list of quality assurance objectives with respect to DevOps functionalities is presented in Table
9. These objectives cover mostly source code quality and functionality tesg. For each
objective, a qualitative or quantitative target is specified, along with theutomatic or manual
means to check if the target is achieved. Operation-time quality assurance Wibe also
monitored through the deployment and KPI monitoring tools of Section 7, but these aneore
related to the achievement of functional and non-function requirements, to bevaluated within
the activities of WP7.

Table 9: Quality assurance objectives for DevOps.

Objective Target Means to check ‘

Source code directory Structure should be as Simple automatic tests can be implemented to
structure described in Section2.4. check if all necessary filesREADMBID

LICENCE.TXTDockerfile etc.) exist and are
properly named.

Source code quality Minimum bugs, code is Automatic static code analysis tools such as
clearly written, stylistic SonarQube'?® and linters, e.g. Pylint?.
conventions followed.

Source code All publicly exposed By design: Existing documentation
documentation functions and services management frameworks will be used by the
should be documented developers to document the components (see
(functionality, input, Sections2.4 and 9.2.2).
output).

Automatic tests will be implemented to check if
all released API is properly documented.

Code coverage by tests ~ 80% code coverage®. Use of automatic code coverage tools, such as
Codecov'?, Clover?’, Coberturai?® and
Coverage.py®.

123 SonarQube, https://www.sonarqube.org/Last access June 2021.

124 pylint, https://www.pylint.org/Last access June 2021.

125 1t is generally advised that code coverage is not used as a stritarget, but rather as an indication of points in the code that have
not been tested. It should not be responsible for allocating much effort creating tests that are of little value, only to increasene
code coverage rate. See e.g.https://medium.com/@nickleel/why-test-code-coverage-targets-are-a-bad-idedb9b8ef711ef (last
access June 2021).

126 Codecov, https://about.codecov.io/ Last access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Timely delivery of
components

Component versioning

Unit/Integration test
success

Security

Components are
delivered according to

By design: Use of GitFlow° branching scheme
for feature development and hotfixes (see

planned deadlines (in the Section 2.2.3.1).

DoA) and bug

Version numbers are
incremented properly

By design: Use of semantic versioning (see
Section 5.4) will be used for component

and no new features are versioning.

added to already
released versions.

100% success of unit
and integration tests.

Minimum source code
vulnerabilities.

Use of automatic and manual tests written by
developers and integrators and run either
automatically in DevOps pipelines or manually
by testers through test reporting platforms (see
Section4.4).

Use of automatic code quality checking tools
such as SonarQube.

127 pAtlassian Clover https://www.atlassian.com/software/clovelast access June 2021.

128 Cobertura, http://cobertura.github.io/cobertura/Last access June 2021.

129 Coverage.py, https://coverage.readthedocs.io/en/coverage-5.5L ast access June 2021.

130 GitFlow, https://datasift.github.io/gitflow/IntroducingGitFlow.htmilast access June 2021.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

10 Conclusion

In order to achieve continuous integration and continuous delivery for a lagroject such as
ODIN, several steps and tools need to be considered. This deliverable attempted trganize
and clarify the DevOps procedure, from source code management to deploymemhonitoring,
providing guidelines to the technical partners of ODIN. At each DevOpsspect, the available
tools were examined in order to select appropriate ones for the requirements of ODIN.

This deliverable is meant to be used as a reference point and guide f&',1pV WHFKQLFDO WH
7KH UHDGHU FDQ FRQVXOW WKH gJXL Gddrona@zdd/in AppeRMKIARQ V DW HI
quickly find the recommended procedures to ensure high quality component dediry, moving to

other parts of the deliverable for more detaildf needed.

]he document and the guidelines are susceptible to changes as the project progses, as the

requirements evolve and as components are being developed and deployed. Fthis reason,

and due to the lack of another version of this deliverable, the document wik transferred to the

proecWpV :LNL RQFH WKH ODWWHU LV UHOHDOWHEQER RXIGHH) WRG
when needed.

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

Appendix A DevOps service list

The following table summarises2 ', 1 pMevOps infrastructure. The table lists each step of the

DevOps workflow, including the URLs of the corresponding servers and links to the

corresponding guideline sections in the deliverable. The table can be used asreference map
of the DevOps infrastructure, to guide developers and deployers throughout tlienvolvement in
the ODIN project. This reference will beLQFOXGHG LQ WKH SURMHFWpV

and will form the basis for the implementation of the DevOps home page.

Table 10: ODIN DevOps service list.

DevOps Server URL Guidelines

functionality

Access to all DevOps home https://dev.odin-smarthospitals.eu Section 9.3

services page

Source code GitLab https://qitlab.odin-smarthospitals.eu Section2.4

management

Building and GitLab https://qitlab.odin-smarthospitals.eu Section 3.3

containerization

Testing Testing To be decided during the course of the Section4.4
infrastructure project

Software release Docker registry https://registry.odin-smarthospitals.eu Section5.4

Deployment Portainer / https://portainer.odin-smarthospitals.eu Section 6.3,

management Docker swarm / Section7.4
Kubernetes

KPI monitoring KPI monitoring To be decided during the course of the Section7.4
tool project

Feedback Ticketing server To be decided during the course of the Section7.4

collection and project

ticketing

CI/CD pipeline Jenkins server https://jenkins.odin-smarthospitals.eu Section 8.2

orchestration

DevOps Keycloak server https://account.odin-smarthospitals.eu Section 9.1.4

authentication

Public Key SKS keyserver https://sks.odin-smarthospitals.eu Section 9.1.4

Infrastructure

Documentation ODIN knowledge To be decided during the course of the Section 9.2.1
base (wiki) project

Version 1.0 | 2021-06-30 | ODIN ©

:LNL DV

Deliverable D3.1 t Operational framework

Appendix B Acronym glossary

Acronym Definition

Al Artificial Intelligence

CI/ICD Continuous Integration / Continuous Delivery
DDOS Distributed Denial-Of-Service

DevOps Development Operations

ECS Amazon Elastic Container Service

GUI Graphical User Interface

ICREA Catalan Institution for Research and Advanced Studies
IDE Integrated Development Environment

IPR Intellectual Property Rights

ISO International Organization for Standardization
IT Information Technology

ITIL Information Technology Infrastructure Library
KPI Key Performance Indicator

MPOE Minimum Point of Entry

MS Milestone

MW Mega-watts

NOC Network Operations Cente

ROS Robot Operating System

SCM Source Code Management

SOC Security Operations Centre

SSAE Statement on Standards for Attestation Engagements
SVN Apache Subversion

Tl Technical Infrastructure

ul User Interface

UPS Uninterruptible Power Supply

URL Uniform Resource Locator

Version 1.0 | 2021-06-30 | ODIN ©

Deliverable D3.1 t Operational framework

VESDA Very Early Smoke Detection Air
VCS Version Control System
WP Work Package

Version 1.0 | 2021-06-30 | ODIN ©

