

Deliverable No. D3.1 Due Date 30/06/2021

Description
Establishes the infrastructure, protocols, structures and operations
for development and operation of the ODIN platform, to be used in
WP3-5.

Type Report
Dissemination
Level

PU

Work Package No. WP3
Work Package
Title

Platform integration, Privacy,
Security and Trust + knowledge +
cognition

Version 1.0 Status Final

D3.1 Operational framework

�7�K�L�V���S�U�R�M�H�F�W���K�D�V���U�H�F�H�L�Y�H�G���I�X�Q�G�L�Q�J���I�U�R�P���W�K�H���(�X�U�R�S�H�D�Q���8�Q�L�R�Q�p�V���+�R�U�L�]�R�Q�������������U�H�V�H�D�U�F�K��
�D�Q�G���L�Q�Q�R�Y�D�W�L�R�Q���S�U�R�J�U�D�P�P�H���X�Q�G�H�U���J�U�D�Q�W���D�J�U�H�H�P�H�Q�W���1�—��101017331

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 2

Authors

Name and surname Partner name e-mail

Ilias Kalamaras CERTH kalamar@iti.gr

Dimitrios Giakoumis CERTH dgiakoum@iti.gr

Konstantinos Votis CERTH kvotis@iti.gr

Giuseppe Fico UPM gfico@lst.tfo.upm.es

Alejandro Medrano UPM amedrano@lst.tfo.upm.es

Eugenio Gaeta UPM eugenio.gaeta@lst.tfo.upm.es

Álvaro Belmar UPM abelmar@lst.tfo.upm.es

Ezequiel Simeoni UPM esimeoni@lst.tfo.upm.es

Pilar Sala MYS psala@mysphera.com

Jesús Gago Centeno INETUM jesus.gago@inetum.world

Marta Millet ROB mmillet@robotnik.es

Ernesto Iadanza UoW ernesto.iadanza@warwick.ac.uk

History

Date Version Change

25/05/2021 0.1 Initial draft containing table of contents and first skeleton
content.

02/06/2021 0.2 First draft content.

14/06/2021 0.3 Added content in all sections.

16/06/2021 0.4 Added content in all sections.

16/06/2021 0.5 Integrated input from INETUM.

18/06/2021 0.6 Integrated input from UoW and UPM, �D�G�G�U�H�V�V�H�G���S�D�U�W�Q�H�U�V�p��
comments and added further content.

21/06/2021 0.7 Added further content in all sections.

21/06/2021 0.8 Version ready for peer-review.

28/06/2021 0.9 Additional input for peer-review.

mailto:kalamar@iti.gr
mailto:dgiakoum@iti.gr
mailto:kvotis@iti.gr
mailto:gfico@lst.tfo.upm.es
mailto:amedrano@lst.tfo.upm.es
mailto:eugenio.gaeta@lst.tfo.upm.es
mailto:abelmar@lst.tfo.upm.es
mailto:esimeoni@lst.tfo.upm.es
mailto:psala@mysphera.com
mailto:jesus.gago@inetum.world
mailto:mmillet@robotnik.es
mailto:ernesto.iadanza@warwick.ac.uk

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 3

Key data

Keywords DevOps, operational framework, continuous
development/integration

Lead Editor Ilias Kalamaras (CERTH)

Internal Reviewer(s) Marta Millet Pascual-Leone (ROB)

Pablo Lombillo Biosca (MYS)

Abstract
D3.1 Operational framework describes the software infrastructure used to support continuous
development and integration of software components developed in ODIN. The infrastructure
involves source code versioning, build tools, component repositories, and automatic
deployment tools for installation and use at the pilot sites. The goal of the infrastructure is to
create a continuous workflow from developer to end user, so that any new functionalities or bug
fixes are available to the end user as soon as possible and with minimum effort.

Statement of originality
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both.

28/06/2021 0.10 Integrated input from peer-review and addressed comments
from other partners.

29/06/2021 0.11 Minor corrections.

29/06/2021 0.12 Version ready for quality check.

30/06/2021 0.13 Addressed comments of quality check.

30/06/2021 1.0 Final version.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 4

Table of contents
TABLE OF CONTENTS .. 4

LIST OF TABLES ... 7

LIST OF FIGURES .. 8

1 INTRODUCTION ... 9

1.1 DELIVERABLE CONTEXT .. 10

1.2 DEVOPS OVERVIEW .. 11

2 SOURCE CODE MANAGEMENT .. 14

2.1 SOURCE CODE VERSIONING .. 14

2.2 SOURCE CODE VERSIONING TOOLS .. 14

2.2.1 Subversion (SVN) ... 15

2.2.2 Mercurial .. 16

2.2.3 Git .. 16

2.2.4 Comparison .. 18

2.3 OPEN SOURCE .. 19

2.4 ODIN GUIDELINES ... 19

3 BUILDING SOFTWARE .. 23

3.1 BUILD AUTOMATION TOOLS ... 23

3.1.1 Make .. 23

3.1.2 CMake ... 24

3.1.3 Catkin .. 26

3.1.4 Maven .. 27

3.1.5 PIP ... 29

3.1.6 NPM ... 30

3.1.7 Gradle .. 31

3.1.8 Bazel .. 32

3.2 CONTAINERIZATION ... 34

3.3 ODIN GUIDELINES ... 36

4 TESTING SOFTWARE .. 38

4.1 UNIT TESTS ... 38

4.2 INTEGRATION TESTS ... 40

4.3 TEST SERVER INFRASTRUCTURE ... 41

4.4 ODIN GUIDELINES ... 42

5 SOFTWARE RELEASE ... 44

5.1 SOFTWARE RELEASE VERSIONS .. 44

5.2 TAGGING VERSIONS ... 44

5.3 DOCKER REGISTRY ... 45

5.4 ODIN GUIDELINES ... 46

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 5

6 DEPLOYMENT .. 48

6.1 SERVICE COMPOSITION .. 48

6.2 TOOLS FOR SERVICE COMPOSITION .. 49

6.2.1 Docker-compose .. 49

6.2.2 Docker swarm .. 50

6.2.3 Kubernetes ... 51

6.2.4 Amazon EC2 Container Service (ECS) .. 52

6.2.5 Apache MESOS .. 53

6.2.6 Nomad ... 53

6.2.7 Comparison .. 53

6.3 ODIN GUIDELINES ... 54

7 OPERATION MONITORING AND FEEDBACK COLLECTION .. 55

7.1 GRAPHICAL USER INTERFACES (GUIS) FOR MANAGING DEPLOYMENTS 55

7.1.1 Swarmpit .. 56

7.1.2 Kubernetes dashboard .. 56

7.1.3 OpenShift ... 57

7.1.4 Portainer .. 58

7.1.5 Comparison .. 59

7.2 OPERATION MONITORING KPIS .. 59

7.3 COLLECTING FEEDBACK FROM PILOT SITES .. 61

7.3.1 Faveo Helpdesk .. 62

7.3.2 Handesk ... 62

7.3.3 Jira Service Desk .. 63

7.3.4 Trudesk .. 64

7.3.5 UVDesk .. 65

7.3.6 Zoho Desk .. 66

7.3.7 Comparison .. 67

7.4 ODIN GUIDELINES ... 68

8 PIPELINE ORCHESTRATION .. 69

8.1 TOOLS FOR CI/CD .. 69

8.1.1 Jenkins ... 69

8.1.2 CircleCI .. 71

8.1.3 TeamCity .. 72

8.1.4 Bamboo.. 73

8.1.5 GitLab .. 74

8.1.6 Comparison .. 75

8.2 ODIN GUIDELINES ... 76

9 HORIZONTAL SERVICES ... 77

9.1 SECURITY MECHANISMS FOR DEVOPS .. 77

9.1.1 Single Sign On and Authorisation service: Keycloak ... 78

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 6

9.1.2 Public Key Infrastructure: SKS keyserver & Docker notary server 78

9.1.3 Transport Layer Security: X509 certification ... 79

9.1.4 ODIN guidelines .. 79

9.2 DOCUMENTATION .. 80

9.2.1 ODIN Knowledge Base.. 81

9.2.2 Component documentation ... 81

9.3 DEVOPS HOME PAGE ... 82

9.4 DEVOPS QUALITY ASSURANCE... 83

10 CONCLUSION ... 87

APPENDIX A DEVOPS SERVICE LIST... 88

APPENDIX B ACRONYM GLOSSARY ... 89

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 7

List of tables
TABLE 1: DELIVERABLE CONTEXT. ... 10

TABLE 2: COMPARISON OF SOURCE CODE VERSIONING TOOLS. ... 19

TABLE 3: TEST ENVIRONMENT CLOUD DATACENTER FEATURES. ... 42

TABLE 4: COMPARISON OF SERVICE COMPOSITION TOOLS. ... 54

TABLE 5: COMPARISON OF DEPLOYMENT MANAGEMENT GUIS. ... 59

TABLE 6: COMPARISON OF HELP DESK TOOLS. ... 67

TABLE 7: COMPARISON OF CI/CD PIPELINE ORCHESTRATION TOOLS. ... 76

TABLE 8: ODIN DEVOPS USER ROLES. .. 80

TABLE 9: QUALITY ASSURANCE OBJECTIVES FOR DEVOPS. ... 85

TABLE 10: ODIN DEVOPS SERVICE LIST. ... 88

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 8

List of figures
FIGURE 1: THE GENERAL DEVOPS WORKFLOW. SOURCE DEVOPEDIA.ORG. 11

FIGURE 2: HIGH-LEVEL OVERVIEW OF THE CI/CD WORKFLOW TO BE USED IN ODIN. 12

FIGURE 3: DETAILED OVERVIEW OF THE ODIN DEVOPS WORKFLOW. .. 13

FIGURE 4: EXAMPLE OF A GITFLOW WORKFLOW. ... 17

FIGURE 5: SOFTWARE TESTING LEVELS. ... 38

FIGURE 6: MONOLITHIC VS. MICRO-SERVICE APPLICATIONS... 48

FIGURE 7: SCREENSHOT OF THE SWARMPIT GUI. .. 56

FIGURE 8: SCREENSHOT OF THE KUBERNETES DASHBOARD GUI. .. 57

FIGURE 9: SCREENSHOT OF THE OPENSHIFT GUI. ... 58

FIGURE 10: SCREENSHOT OF THE PORTAINER GUI. ... 59

FIGURE 11: SCREENSHOT OF THE FAVEO HELPDESK GUI. .. 62

FIGURE 12: SCREENSHOT OF THE HANDESK GUI. ... 63

FIGURE 13: SCREENSHOT OF THE JIRA SERVICE DESK GUI. .. 64

FIGURE 14: SCREENSHOT OF THE TRUDESK GUI. .. 65

FIGURE 15: SCREENSHOT OF THE UVDESK GUI.. 66

FIGURE 16: SCREENSHOT OF THE ZOHO DESK GUI. .. 67

FIGURE 17: SCREENSHOT OF THE TEAMCITY CI/CD TOOL. ... 73

FIGURE 18: SCREENSHOT OF THE BAMBOO CI/CD TOOL. .. 74

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 9

1 Introduction
This deliverable describes �2�'�,�1�p�V operational framework for continuous development,
integration and delivery of software components, collectively called DevOps. The document
covers a continuous workflow from developer to end-user, including source code management
and version control, build automation tools, containerization tools, software testing frameworks,
component release guidelines, component deployment, deployment management, as well as
the tools that will be used to automate the execution of the steps in this workflow.

The deliverable provides a description of the infrastructure that will be implemented in ODIN
regarding DevOps, including version control servers, Docker registries, deployment
management servers, orchestration services and security provisioning. It provides a description
of popular alternatives for the tools in each step, from which the ones to be used in ODIN are
selected. It also provides information about best practices for the different steps to facilitate
developers and ensure high-quality software production.

The deliverable is meant to provide guidelines to the technical members of the ODIN consortium
�U�H�J�D�U�G�L�Q�J���W�K�H���V�H�U�Y�L�F�H�V���S�U�R�Y�L�G�H�G���E�\���2�'�,�1�p�V���'�H�Y�2�S�V���L�Q�I�U�D�V�W�U�X�F�W�X�U�H�����D�Q�G���D�E�R�X�W���K�R�Z���W�R��use them
during development and deployment. Sections 2 to 9 cover the main steps in the DevOps
workflow. Each section is structured in the same high-level manner:

�x An introduction to the type of activities involved in the step to be described

�x A presentation of the available tools to facilitate these activities

�x �$�� �V�H�F�W�L�R�Q�� �Q�D�P�H�G�� �q�2�'�,�1�� �J�X�L�G�H�O�L�Q�H�V�r���� �G�H�V�F�U�L�E�L�Q�J�� �W�K�H�� �W�R�R�O�V�� �D�Q�G�� �S�U�R�F�H�G�X�U�H�V�� �W�K�D�W�� �Z�L�O�O�� �E�H��
used and followed within ODIN regarding the corresponding activities, as well as the
infrastructure that will be setup to manage them.

A reader wishing to find guidance about how each step should be addressed within ODIN may
�V�W�D�U�W�� �E�\�� �F�R�Q�V�X�O�W�L�Q�J�� �W�K�H�V�H�� �q�2�'�,�1�� �J�X�L�G�H�O�L�Q�H�V�r�� �V�H�F�W�L�R�Q�V���� �Z�K�L�F�K�� �F�D�Q�� �E�H�� �X�V�H�G�� �D�V�� �D�� �J�X�L�G�H�� �Z�L�W�K��
references to the other parts of the deliverable for details, where necessary. A summary of the
whole ODIN DevOps infrastructure, with links to the appropriate guidelines is provided in 10.

This deliverable will be shared with the consortium and will establish the DevOps guidelines that
�Z�L�O�O���E�H���P�D�L�Q�W�D�L�Q�H�G���G�X�U�L�Q�J���W�K�H���S�U�R�M�H�F�W�p�V���O�L�I�H�W�L�P�H�����7�K�H�U�H���Z�L�O�O���E�H���Q�R���R�W�K�H�U���Y�H�U�V�L�R�Q���R�I���W�K�L�V���G�H�O�L�Y�H�U�D�E�O�H����
However, the guidelines contained in this version will be transferred to the project Wiki (once it
is released, as part of the activities of T3.4). The version uploaded to the Wiki will act as a
running document shared among the consortium that will be updated whenever changes occur.
Such changes may include changes in DevOps domain names, or switching to a different tool
for a particular step if problems arise in practice. In such cases, any modifications will be
reported in the Wiki and disseminated to the technical members of the consortium through
appropriate communication channels, such as project meetings and mailing lists.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 10

1.1 Deliverable context
Table 1 provides an overview of the context of the current deliverable, in relation to the project
objectives and foreseen results.

Table 1: Deliverable context.

PROJECT ITEM RELATIONSHIP

Objectives

�7�K�H���G�H�O�L�Y�H�U�D�E�O�H���L�V���U�H�O�H�Y�D�Q�W���W�R���2�'�,�1�p�V���2�E�M�H�F�W�L�Y�H���������D�V���L�W���G�H�V�F�U�L�E�H�V���D�Q�G��
defines the basis for the development and deployment of the
components that comprise the foreseen open and secure decentralized
ODIN platform.

Exploitable results
There is no specific contribution to any exploitable results. Instead, the
infrastructure presented hereby will be used as the basis for the
development of potentially exploitable components.

Workplan

D3.1 is attributed to the tasks of WP3, Platform integration, Privacy,
Security and Trust + knowledge + cognition. Specifically, the task
involved in the preparation of this deliverable is T3.1, DevOps and
infrastructure.

Milestones
D3.1 is a key deliverable of the PREPARATION (MS1) and
IMPLEMENTATION (MS3) phases of the project.

Deliverables

D3.4 �t D3.6
Privacy Security and
Trust report

Regarding security
mechanisms

D3.7 �t D3.9
Technical Support Plan
and Operations

Regarding component
documentation and feedback
collection.

D3.10 �t D3.12 ODIN platform
Regarding the application of
DevOps in the development
of the ODIN platform.

D7.2 �t D7.7
KPI Evolution Report (I
to IX)

Regarding the collection of
KPIs about DevOps activities.

D7.9
Pilot Studies Evaluation
Results and
sustainability

Regarding component
evaluation results of
unit/integration testing.

Risks

The guidelines provided in this deliverable can help in minimizing the
following risks identified in the Grant Agreement:

�x Technologies not available in time
�x Technical problems during component/module development
�x Complexity of unification procedure

The described DevOps guidelines provide a continuous
development/integration infrastructure and best practices that can assist
in delivering components in time, reducing technical problems in
component development and deployment, and reducing complexity of
deployment follow-up through a continuous delivery pipeline.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 11

1.2 DevOps overview
DevOps is a term to describe a culture where the fields of software development and operation
are brought closer together, facilitating and accelerating the release of new functionalities1.

DevOps involves two key ideas:

�x Adopting practices for developing high-quality, production-ready and easy to maintain
software, such as naming conventions for easy collaboration, unit testing for quickly
spotting bugs, comprehensive documentation, etc.

�x Making use of automation tools for automatic building, distributing and deploying
software, so that new functionalities and changes are propagated as soon as possible to
the end users for operation.

Figure 1: The general DevOps workflow. Source devopedia.org.

The steps involved in a continuous integration/continuous delivery (CI/CD) workflow are mainly
the following, as shown in Figure 2:

�x Source code management: Structuring and documenting source code, managing
versions, collaborating, etc.

�x Building automation: Building source code into executable applications.

�x Testing: Writing and executing unit and integration tests to check the proper functioning
of the application.

�x Release: Making the application available to end-users.

1 Devopedia, https://devopedia.org/devops. Last access June 2021.

https://devopedia.org/devops

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 12

�x Deployment: Installing the application to the target execution environment, e.g., at a
pilot site.

�x Execution / monitoring: Running the application at the target environment and collecting
feedback about its use and malfunctions

�x Orchestration: Automating the whole process from developer to target execution
environment.

Figure 2: High-level overview of the CI/CD workflow to be used in ODIN.

These steps create a continuous workflow from the developer to the target execution
environment. The orchestration mechanisms are responsible for automating this procedure, so
that changes in the source code made by the developer are automatically propagated through
all steps of the workflow and end up in a new software version running at the pilot site.

In a more detailed view, in ODIN, each of these steps will be handled by a particular DevOps
component, described in the following sections of this deliverable. An overview of the specific
components to handle the different parts can be seen in Figure 3. On one end, the developer is
responsible for providing the source code, along with configuration files needed for properly
building, containerizing and deploying the built application. The source code and the
configuration files are managed by a GitLab source code management server, split into two
parts: one handling the source code and building instructions and another handling component
deployment. As a next step, the source code is built into executable applications and
containerized into Docker images, ready to be installed in any execution environment (see
Section 3.1.7 for details)�����7�K�H���F�U�H�D�W�H�G���'�R�F�N�H�U���L�P�D�J�H�V���D�U�H���U�H�O�H�D�V�H�G���W�R���2�'�,�1�p�V���'�R�F�N�H�U���U�H�J�L�V�W�U�\����
at which point the development phase is complete.

During the deployment phase, the instructions provided by the developer are used to compose
the available Docker images into complete applications that are started in the environment of
the pilot site. The composition process and the monitoring of the running services are managed
through an appropriate dashboard.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 13

The orchestration and automation of the whole workflow from developer to pilot site is managed
by the DevOps administrator, with the use of Jenkins orchestration software. The DevOps
administrator provides a set of Jenkins instruction files, specifying the series of steps needed to
�U�X�Q���H�D�F�K���W�L�P�H���D���F�R�P�S�R�Q�H�Q�W�p�V���V�R�X�U�F�H���F�R�G�H���L�V���D�O�W�H�U�H�G���E�\���W�K�H���G�H�Y�H�O�R�S�H�U. The Jenkins instruction
files are managed in a sepa�U�D�W�H�� �S�D�U�W�� �R�I�� �2�'�,�1�p�V�� �*�L�W�/�D�E���� �7�K�H�� �L�Q�V�W�U�X�F�W�L�R�Q�V�� �D�U�H�� �H�[�H�F�X�W�H�G�� �E�\�� �D��
Jenkins server, automating the whole process.

Figure 3: Detailed overview of the ODIN DevOps workflow.

In the following sections, each step of this procedure is described in detail. Each section covers
an overview of the activities taking place at each step, the available tools to accomplish these
activities, and the way each step will be handled in ODIN, providing thus a set of guidelines for
developers and maintainers to follow.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 14

2 Source code management
The starting point for the development lifecycle of a software component is the source code
written by the developer. This section describes the conventions to be used in ODIN for source
code organization, as well as the tools that will be used for source code storage, management,
versioning and collaborative authoring.

2.1 Source code versioning
Source code versioning tools facilitate keeping track of changes in the source code during the
course of development. They relieve the developer from the need to keep backups of different
versions of a project as it is being developed, as new functionality is being added and as bugs
are fixed. Whenever a particular change has been made to address an issue, the code can be
committed to the versioning tool, which keeps track of all previous commits. If the new change
is found to be problematic, versioning tools allow the developer to roll back to previous versions,
bringing the whole project to an earlier state, so that they can bring the application to a working
state and discover what went wrong. Versioning can be applied not only to source code, but
any type of file, e.g., documents, configuration files, etc., whenever one needs to keep track of
the project versions. Source code versioning tools are the standard way to keep track of source
code versions in production software.

The overall manner in which versioning tools work is the following. The developer starts tracking
a particular directory, e.g., the root directory of a new project. The developer can make
changes in the directory, e.g., add/modify/delete files. At any point during the project
development, the developer can choose to commit the changes to the versioning tool, which
stores the current state of the directory and can tell what changed since the previous version.
The complete history of commits is maintained by the versioning tool. Whenever the developer
wishes to roll back to a previous version, they can checkout a previous commit, which brings
the whole directory to the state it was at that commit, so that the developer can examine its
contents as they were at that point.

Apart from tracking the history of changes, versioning tools also provide two other major
functionalities:

�x Branching, i.e., creating different paths of development starting from the same commit,
which can later be merged if needed. This is e.g. used to maintain a master branch of
the stable version of a piece of software, while experimental branches are initiated from
different points in the master path, in order to develop and test new functionality. Once
the new functionality is finished, the experimental branch can be merged with the master
branch to create a new stable version.

�x Pushing to a remote repository, i.e., uploading the whole tracked history to an online
repository. On the one hand, this is used to create a backup of the whole project history
in a remote location. On the other hand, this is used as a means for collaboration among
several developers. Different developers can work in different parts of a project, pushing
their changes in the common project repository.

2.2 Source code versioning tools
There are several tools that provide source code versioning functionalities. Versioning tools
follow two general paradigms: centralized and distributed version control. In centralized
systems, the source code and its history are stored in a central server, with each developer
communicating with the server in order to get the latest version and commit changes. In

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 15

distributed systems, each developer maintains a complete copy of all source code and its
history. Changes are committed locally, and they can be pushed to remote repositories, for
storage and sharing with others. Both paradigms have their advantages and disadvantages.
Centralized systems make it easier to manage a project, but are time consuming since it
requires a constant connection with the server. Distributed systems are fast but may make it
difficult to coordinate work of many developers. Early version control systems, such as
Subversion, followed the centralized paradigm. However, the advantages of distributed
systems, such as Git, have prevailed over the years, and they are those that are mostly in use
today. Here we briefly review some characteristic and widely used version control systems.

2.2.1 Subversion (SVN)
Apache Subversion2, or SVN, is a widely used centralized version control system. Centralized
means that the whole repository is stored in a central SVN sever, and each developer can
contribute to the repository by committing changes to specific parts. One of the main
advantages of a centralized version control system is the ease of managing the repository, as
there is a single point where all code is gathered, and the administrator can have the full
overview. Another advantage is that collaborating developers can each have an overview of all
�W�K�H���R�W�K�H�U���G�H�Y�H�O�R�S�H�U�V�p���Z�R�U�N��

Disadvantages include the need to be connected to the server in order to commit changes,
which makes it difficult to work in case of server failure. Committing changes to the server may
also induce latencies in the development workflow, as uploading large files may be time-
consuming. These problems are reduced in distributed version control systems, since commits
are made locally and may only be pushed to the repository after several changes have been
made. Another drawback of SVN is the fact that creating new branches is an expensive
procedure, requiring several file copies, discouraging developers from following branching-
based workflows.

Subversion offers a command line interface with commands for committing and pushing code
and managing repositories. GUI tools can also be used as front-ends to the SVN system, such
as TortoiseSVN3 and RapidSVN4, as well as add-ons and extensions to popular IDEs and code
editors.

2 Apache Subversion, https://subversion.apache.org/ Last access June 2021.

3 TortoiseSVN, https://tortoisesvn.net/ Last access June 2021.

4 RapidSVN, https://rapidsvn.org/ Last access June 2021.

https://subversion.apache.org/
https://tortoisesvn.net/
https://rapidsvn.org/

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 16

2.2.2 Mercurial
Mercurial5 is a distributed source code management system that aims at fast management of
large projects. Distributed means that local copies of the complete repositories are stored in
�H�D�F�K���G�H�Y�H�O�R�S�H�U�p�V���P�D�F�K�L�Q�H�����V�R���W�K�D�W���D�O�O���F�K�D�Q�J�H�V���D�U�H���I�L�U�V�W���P�D�G�H���O�R�F�D�O�O�\�����D�Q�G���S�X�V�K�H�G���W�R���W�K�H���U�H�P�R�W�H��
repositories when needed.

The fast tracking of source code with local commits and the ability to commit changes even
without an Intenet connection are significant advantages of Mercurial over SVN, which is a
centralized system. Mercurial also allows to extend its functionalities through extensions. These
extensions may e.g. provide access control mechanisms, usage statistics, notifying developers
through e-mails, etc. However, the branching system of Mercurial is still not quite easy to use
making it a bit hard for developers to securely manage branches.

Mercurial offers a simple set of commands to use, and is thus easy for new users to learn.
Graphical user interfaces are also available from Mercurial, such as TortoiseHG6, and it has also
been integrated in popular IDEs and editors, such as Eclipse, NetBeans, Visual Studio, Emacs
and Vim.

2.2.3 Git
Git7 is an open-source versioning system and is one of the most popular versioning systems. It is
a distributed version control system, similar to Mercurial, meaning that each developer working
on a project maintains a copy of the whole project repository, thus reducing the risk of failure. At
each commit, Git stores a snapshot of the directory structure at the time of the commit, i.e.,
copies the current versions of all files, apart from files which have not changed, for which only a
link to the previous version is stored. Git achieves high speeds in versioning, since all commits
are made locally, and only pushes the changes to a remote repository upon request by the
developer. Git also focuses on easy branching, since a new branch does not create copies of
any files, just creates pointers to existing snapshots. This allows developers to create and
merge branches often, encouraging experimentation.

Git offers a rich command line interface, with commands to track files, commit changes, push to
remote repositories, manage repositories, checkout previous versions, create and manage
branches, etc. Graphical User Interfaces (GUIs) are also available, such as TortoiseGit8 and Git
Extensions9, which allow a visual management of repositories. There are also several extensions

5 Mercurial, https://www.mercurial-scm.org/ Last access June 2021.

6 TortoiseHG, https://tortoisehg.bitbucket.io/ Last access June 2021.

7 Git, https://git-scm.com/ Last access June 2021.

8 TortoiseGit, https://tortoisegit.org/ Last access June 2021.

9 Git Extensions, https://gitextensions.github.io/ Last access June 2021.

https://www.mercurial-scm.org/
https://tortoisehg.bitbucket.io/
https://git-scm.com/
https://tortoisegit.org/
https://gitextensions.github.io/

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 17

to popular editors and Integrated Development Environments (IDEs), such as Visual Studio
Code, Eclipse, Vim, etc. for managing repositories directly from within the IDE.

The advantageous characteristics of Git and its popularity have led to the design of
development workflows based on its versatile branching scheme, as well as to the creation of
widely used online Git repositories. These are briefly summarized below.

2.2.3.1 GitFlow

GitFlow10 is a development flow, conceived by Vincent Driessen, which describes a very precise
branching model built around the concept of software release. This flow is designed to make the
most out of the potential of the Git versioning software, but conceptual affinities can also be
useful for managing the work with other software dedicated to the same functionality.

The flow described in GitFlow is aimed at maintaining a clean implementation history, where a
release communicates to all users the presence of a new version of the product, defined by a
specific changelog consisting of new features and fixes. An example of a GitFlow workflow is
shown in Figure 4.

Figure 4: Example of a GitFlow workflow.

GitFlow allows to:

10 GitFlow, https://datasift.github.io/gitflow/IntroducingGitFlow.html Last access June 2021.

https://datasift.github.io/gitflow/IntroducingGitFlow.html

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 18

�x Develop in parallel: new developments are organized in feature branches and are
merged into the main code only when the team deems it ready for release. This allows
the developers to change tasks without problems.

�x Increase collaboration: feature branches allow multiple developers to work on a single
feature, as it is like a sandbox and all developments are carried out so that it is brought
into production. This also allows one to verify the work done by individual developers on
a feature.

�x Have a release staging area: new developments are merged into a develop branch,
which effectively represents a staging area for all developments that have not yet been
released. This means that when a release occurs, the latter has all the developments in
the develop branch inside.

Support for emergency fixes: there is support for hotfix branches which are nothing more than
branches of a release. In this way, the merge will take place directly in the release branch,
allowing fast fixes that should also be merged in the development branch.

2.2.3.2 Online Git repositories

Popular online repositories for Git projects include GitHub11 and Bitbucket12. They can both be
used to setup remote repositories for projects and link them to local Git repositories, so that
developers can push to these online repositories. Online Git repositories allow the dissemination
of source code to the community, so that other developers can use and modify it. They also
facilitate collaboration among teams of developers. Both GitHub and Bitbucket provide public or
private repositories, and they provide different storage capacity and functionalities according to
their pricing plans.

An alternative to using public repositories such as the above is for developer teams to setup
their own internal Git repository at a dedicated server. GitLab13 is a popular choice for such a
scenario. It provides the infrastructure for hosting a Git repository where teams can push their
code. GitLab can be configured for the needs of a particular team, supporting any number of
users and controlling the available storage space. It also provides DevOps functionalities for
automating testing and building steps upon pushing new versions.

2.2.4 Comparison
The characteristics of the source code versioning tools presented in the previous sections are
summarized and compared in Table 2. In ODIN, Git is selected to be used for source code
management. The key characteristics for this decision are its popularity among the consortium

11 GitHub, https://github.com/ Last access June 2021.

12 Bitbucket, https://bitbucket.org/product/ Last access June 2021.

13 GitLab, https://about.gitlab.com/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 19

members, its high speed of operation, its superior branching mechanism facilitating branch-
based development workflows, the availability of several popular online repositories (GitHub,
Bitbucket, GitLab) and its wide support community.

Table 2: Comparison of source code versioning tools.

 Subversion Mercurial Git

Type Centralized Distributed Distributed

Speed Low High High

Branching Expensive Expensive Cheap

Integration in IDEs �9 �9 �9

Free �9 �9 �9

2.3 Open Source
At the current stage of the project, it is not yet decided if the developed software will be
released, partly or as a whole, open source. This decision will be made during the course of the
project, and in coordination with the exploitation activities of WP9.

Until this decision is made, all source code, configuration, documentation and bug report files
will be kept private within the consortium. Content will be freely accessed by the members of the
consortium or necessary third parties, such as open callers. However, the code should be
maintained in such a manner that it is ready for migration to an open source public repository, if
this is decided. Details about the type of access to the source code will be also reported in
platform deliverables (D3.10, D3.11, D3.12), as well as exploitation deliverables (D9.2, D9.3,
D9.4).

2.4 ODIN guidelines
In ODIN, source code management will be handled using Git and a GitLab repository.
Developers are free to choose the programming language and the development environment to
develop their components. However, they should follow the following guidelines regarding their
Git repository. This will ensure consistency across components, ease of use and maintenance of
the source code and ease of maintenance of all repositories, e.g., in case of migration to a
different host.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 20

�x Developers should use Git14 for source code versioning.

�x �7�K�H�U�H���V�K�R�X�O�G���E�H���R�Q�H���*�L�W���U�H�S�R�V�L�W�R�U�\���S�H�U���F�R�P�S�R�Q�H�Q�W�����q�&�R�P�S�R�Q�H�Q�W�r���K�H�U�H���P�H�D�Q�V��a distinct
piece of software performing a distinct set of functionalities, e.g., a web application, a AI
module, a set of analytics web services, a robot navigation system. The repository
should be as self-contained as possible, so that a developer can clone or fork it and start
working with it directly. A repository can be organized into sub-modules, if they are
conceptually closely related to each other and to the overall functionality of the
component. In this case, the developers can use the git-submodule15 feature, to manage
these sub-modules.

�x The Git repositories should be pushed to the ODIN GitLab server, hosted at:

https://gitlab.odin-smarthospitals.eu

�x In case the component needs building for it to execute (e.g., a compiled executable or a
web application distribution), the developer is encouraged to use one of the build
automation tools described in Section 3.1, depending on the development environment
and language used. This will facilitate dependency management and use by other
developers. In this case, the developer should include in the repository any configuration
files needed by the build automation tool, e.g., Makefiles, package.json files, etc. See
Section 3.1 for more information.

�x The developers are encouraged to include unit and integration tests in the source code,
in a distinct sub-directory within the repository.

�x Each repository should contain a file named Dockerfile , which describes how to build
the component into a Docker image (see Section 3.1.7 for details about Docker). Details
about how this Dockerfile should be structured are provided in Section 3.3. If more
than one Dockerfile s are needed to build the component, this could be an indication
that the component needs to be split into more than one components (see the second
bullet point above). The Dockerfile may be generated by build automation tools (see
Section 3.1), in which case this should be explained in the README.MD file (see below).

�x Each repository should contain a file named README.MD (preferably all capitalized),
containing information about the following:

o Getting stated / Use: A short descript�L�R�Q���R�I���W�K�H���F�R�P�S�R�Q�H�Q�W�p�V���I�X�Q�F�W�L�R�Q�D�O�L�W�L�H�V���D�Q�G���D
short guide for end users to start using the module.

14 Git, https://git-scm.com/ Last access June 2021.

15 Git-submodule, https://git-scm.com/book/en/v2/Git-Tools-Submodules Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 21

o How to build, Install, deploy: A short guide for developers, maintainers and
deployers.

o Testing (optional): A short guide for developers and maintainers on how to run
the developed unit or integration tests.

o Contributing (optional): A short guide for developers and maintainers on how to
contribute to the development of the component, including the code conventions
used, the code incorporation process (e.g., pull requests), the different Git
branches present, etc.

o Credits / Getting help (optional): Contact information of the
developers/contributors to the component, so that users or other developers can
address questions/issues/problems. In case issue and bug tracking is handled
by issue tracking services, this part should include references to these services.

o Licence: A short summary of the licence applying to the module.

�x Each repository should contain a file named LICENCE.TXT (preferably all capitalized),
containing the licence declaration under which the component is distributed (e.g. GPL,
MIT, etc.). A short version of this licence should be included in README.MD.

�x Each repository should contain a file named NOTICE.TXT (preferably all capitalized),
describing the dependencies, IPR owners, etc. as explained in the ODIN licence policy
of D1.2 Data Management Plan and its updated versions.

�x When committing code and using source code management tools, it is recommended to
follow Git best practices16, such as the following:

o Make atomic commits, i.e. one logical change per commit.

o Do not commit generated, compiled, binary or large files, whenever possible.
Properly use the .gitignore file to avoid accidental commit of these files.
There are many relevant .gitignore templates available17.

o Do not commit dependencies, use package management or git-submodule18.

o Do not commit local configuration such as passwords, or absolute file system
references.

o Write useful commit messages.

16 Git best practices, https://acompiler.com/git-best-practices/ Last access June 2021.

17 Gitignore, https://github.com/github/gitignore Last access June 2021.

18 Git-submodule, https://git-scm.com/book/en/v2/Git-Tools-Submodules Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 22

o Adhere to the agreed workflow, such as tagging releases, using branch naming
conventions and avoiding rewriting history.

o Test before pushing.

Developers should follow common source code documentation guidelines and best practices19,
documenting at least the developed APIs (functions, classes, modules, web services). The
source code should be written as much clearly as possible, so that minimum documentation is
needed, in parts where the meaning of the code is not directly visible. Developers should use
existing documentation tools and frameworks available for the programming language and
environment they are using, such as Doxygen20, Javadoc21, Sphinx22, etc. All component
documentation will be also released as part of the ODIN knowledge base (see Section 9.2), as
part of the activities of T3.4.

19 Google style guide, https://google.github.io/styleguide/docguide/best_practices.html Last access June 2021.

20 Doxygen, https://www.doxygen.nl/index.html Last access June 2021.

21 Javadoc, https://www.oracle.com/java/technologies/javase/javadoc-tool.html Last access June 2021.

22 Sphinx, https://www.sphinx-doc.org/en/master/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 23

3 Building software
In order for the source code to be executed in the operation environment, it needs to be built
into an executable program (i.e. binary, webapp, library, etc.). Building is often a complicated
procedure, since it involves managing external dependencies, such as libraries and other
cooperating components. Build automation tools can facilitate this procedure by providing
mechanisms to clearly define the building procedure and manage dependencies. At the same
time, containerization tools allow applications to run in any environment, significantly easing the
deployment process. This section provides an overview of the build automation and
containerization tools that will be used in ODIN.

3.1 Build automation tools
Build automation tools aim to facilitate the compilation of the source code of a project into one
or more ready-to-use applications or libraries, such as binary executables, web application
distributions, mobile apps, etc. Build automation tools describe the steps needed to build a
piece of software, the dependencies needed and their required versions, etc. This section
overviews some of the most used build automation tools, each more or less targeting a different
programming environment and language.

3.1.1 Make
The utility make23 dates back to 1976 and has traditionally mostly been used for building C/C++
software, especially in Unix-like systems. The specification of the build process is defined in a
special file called Makefile . Each step of the build process is described by a rule specifying the
target object (e.g., an executable file or a library object), its dependencies, i.e., the files that it
uses for its construction, (e.g., source code files, header files or other libraries), and the set of
commands that act on the dependencies in order to construct the target object. Any available
utility, e.g., the gcc compiler, can be used in the commands. When the source code is changed,
the developer can run the make program, which builds the target object by running the specified
commands. If the target object already exists, make decides whether it needs to be rebuilt by
checking if any of its dependencies has been modified since the previous build. Apart from
building, a Makefile can also specify other types of actions, such as installing the built
application in a particular directory, or cleaning up intermediate files. The specification of make
is quite generic, so that it is not limited to building executable applications, but any type of file
that is constructed out of other files, e.g., images or PDF documents.

An example Makefile can be seen below. Each object file to build (*.o files) is specified as a
target that depends on a number of source and header files. The main executable program,

23 GNU make, https://www.gnu.org/software/make/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 24

edit , is defined as the first target that depends on all the other object files. The order in which
rules are written does not matter, since the order is encoded in the dependencies of each
target. Targets with no dependencies, such as clean , can be used to perform tasks such as
cleaning up intermediate files or installing the built executable.

 objects = main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

 edit : $(objects)
 cc -o edit $(objects)

 main.o : main.c defs.h
 cc -c main.c
 kbd.o : kbd.c defs.h command.h
 cc -c kbd.c
 command.o : command.c defs.h command.h
 cc -c command.c
 display.o : display.c defs.h buffer.h
 cc -c display.c
 insert.o : insert.c defs.h buffer.h
 cc -c insert.c
 search.o : search.c defs.h buffer.h
 cc -c search.c
 files.o : files.c defs.h buffer.h command.h
 cc -c files.c
 utils.o : utils.c defs.h
 cc -c utils.c
 clean :
 rm edit $(objects)

3.1.2 CMake
CMake24 is a cross-platform build automation tool that can be used to compile software in a
multitude of development environments and in a compiler independent manner. It is designed in
such way allowing to be used with the native build environment. While make uses a Makefile to
compile an executable, CMake operates one level higher and is used to generate Makefile s,
Ninja build files, KDEvelop, Xcode, or configurations for other types of build systems, such as

24 CMake, https://cmake.org/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 25

Visual Studio project files. The developer specifies the building process and the dependencies in
a platform-agnostic file, called CMakeList.txt , which is then translated into the appropriate
build system configuration files, according to the language/IDE/operating system used. An
example CMakeList.txt file is presented below.

 # CMakeLists files in this project can
 # refer to the root source directory of the project
 # as ${HELLO_SOURCE_DIR} and
 # to the root binary directory of the project
 # as${HELLO_BINARY_DIR}.

 cmake_minimum_required (VERSION 2.8.11)
 project (HELLO)

 # Recurse into the "Hello" and "Demo" subdirectorie s.
 # This does not actually cause another cmake executable t o
 # run. The same process will walk through the proje ct's
 # entire directory structure.

 add_subdirectory (Hello)
 add_subdirectory (Demo)

 # Create a library called "Hello" which includes th e
 # source file "hello.cxx".
 # The extension is already found. Any number of sou rces
 # could be listed here.

 add_library (Hello hello.cxx)

 # Make sure the compiler can find include files for our
 # Hello library when other libraries or executables link
 # to Hello

 target_include_directories (Hello PUBLIC
 ${CMAKE_CURRENT_SOURCE_DIR})

 # Add executable called "helloDemo" that is built f rom the
 # source files "demo.cxx" and "demo_b.cxx". The ext ensions
 # are automatically found.

 add_executable (helloDemo demo.cxx demo_b.cxx)

 # Link the executable to the Hello library. Since t he
 # Hello library has public include directories we will
 # use those link directories when building helloDemo

 target_link_libraries (helloDemo LINK_PUBLIC Hello)

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 26

3.1.3 Catkin
Catkin25 is the official build system of ROS (Robot Operating System) and the successor to the
original ROS build system. It combines CMake macros and Python scripts to enhance the
�R�U�L�J�L�Q�D�O�� �I�X�Q�F�W�L�R�Q�D�O�L�W�\�� �R�I�� �&�0�D�N�H�p�V�� �Q�R�U�P�D�O�� �Z�R�U�N�I�O�R�Z���� �,�W�� �L�V�� �G�H�V�L�J�Q�H�G�� �L�Q�� �V�X�F�K��a way to allow better
distribution of packages, better cross-compiling support and better portability. Catkin's workflow
is very similar to CMake's but adds support for automatic �qfind package�r infrastructure and
building multiple, dependent projects at the same time. ROS requires its own custom build
system (i.e., Catkin) since there are lots of independent packages which depend on each other,
utilize various programming languages, tools, and code organization conventions, within a single
ROS project. There are three main types of dependency files that need to be configured for a
ROS package within a ROS project:

�x package.xml : This file is responsible for ordering of the configure step (cmake)
sequence for catkin-packages in catkin workspaces, define packaging dependencies for
bloom (what dependencies to export when creating debian pkgs), define system (non-
catkin-pkgs) build dependencies for rosdep, and document build or install or runtime
dependency for roswiki / graph tool (rqt_graph). An example package.xml file is shown
below.

 <package>
 �]
 <name>example_pkg</name>
 <buildtool_depend> catkin </buildtool_depend>
 <build_depend> cpp_common</build_depend>
 <build_depend> log4cxx </build_depend>
 <test_depend> gtest </test_depend>
 �]
 <run_depend>cpp_common</run_depend>
 <run_depend>log4cxx </run_depend>
 </package>

�x CMakeLists.txt : In general, CMakeLists.txt is responsible for preparing and
executing the build process using the enhanced functionality of CMake as described
above. An example is shown below.

25 ROS Catkin, http://wiki.ros.org/catkin Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 27

 find_package (catkin REQUIRED COMPONENTS cpp_common
 geometry_msgs)
 find_package (Log4cxx QUIET)
 generate_messages (DEPENDENCIES geometry_msgs)

 catkin_ package (
 CATKIN DEPENDS cpp common geometry msgs
 DEPENDS Log4cxx
)

 add_library (example_lib src/example.cpp)
 target_link_libraries (example_lib
 $(catkin_LIBRARIES) $(LOG4CXX_LIBRARIES))
 add_dependencies (examplelib geometry msgs gencpp)

�x setup.py : If a package declares Python modules for other packages to use, those need
to be declared in a setup.py file. The names used there could be names of catkin
packages or packages distributed over Pypi. An example is shown below.

 from distutils.core import setup

 setup (
 �]
 requires = ['rospy']
)

3.1.4 Maven
Apache Maven26 is a system used to build and manage Java-based projects. Maven can
simplify and automate the initiation of Java projects, the building process and dependency
management. It can be used to automat�H�� �D�� �V�H�Y�H�U�D�O�� �S�K�D�V�H�V�� �R�I�� �D�� �S�U�R�M�H�F�W�p�V�� �G�H�Y�H�O�R�S�P�H�Q�W����
including source code validation, compilation, testing, packaging, verification, installation and
deployment.

The initiation of a Maven project is based on plugins implementing several archetypes, i.e.,
templates for specific types of projects, such as command-line applications, web applications,
plugins, etc. Initiating a project based on an archetype creates the necessary directory structure
and configuration files that will be needed for the build process.

26 Apache Maven, https://maven.apache.org/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 28

The main configuration file for Maven is the pom.xml file. It is and XML file specifying the Project
Object Model (POM) of the application, containing most of the information needed to build the
application and manage its dependencies. An example pom.xml file can be seen below27.

 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi= "http://www.w3.org/2001/XMLSchema-
 instance"
 xsi:schemaLocation= "http://maven.apache.org/
 POM/4.0.0 http://maven.apache.org/
 xsd/maven-4.0.0.xsd" >

 <modelVersion> 4.0.0 </modelVersion>

 <groupId> com.mycompany.app</groupId>
 <artifactId> my-app </artifactId>
 <version> 1.0 -SNAPSHOT</version>

 <properties>
 <maven.compiler.source>
 1.7
 </maven.compiler.source>
 <maven.compiler.target>
 1.7
 </maven.compiler.target>
 </properties>

 <dependencies>
 <dependency>
 <groupId> junit </groupId>
 <artifactId> junit </artifactId>
 <version> 4.12 </version>
 <scope>test </scope>
 </dependency>
 </dependencies>
 </project>

27 Example taken from https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 29

3.1.5 PIP
Pip28 is a package installer for Python projects. Python is an interpreted language, hence there
is no notion of compiling or building source code to an executable. However, pip is included in
this list, since it can be used to manage dependencies for Python projects, similar to the
dependency management functionalities of build automation tools.

Pip is essentially a packages installer for Python libraries. Developers can use pip to install a
Python library, mainly from the Python Package Index29. Pip can be run from the command line
and performs by downloading the requested package and installing it at the proper location in
order to make it available to Python code.

When creating a project involving several external libraries, it is important to list them in a formal
manner so that other developers can collectively install all necessary dependencies in order to
execute the application. To specify and automate dependency installation, developers can
create a requirements.txt file including all necessary libraries and their versions. This file can
be provided as a command line input to the pip tool, which downloads and installs all of them,
respecting the corresponding version numbers and using the latest versions of the required
libraries, when this is allowed by the specification. An example requirements.txt file can be
seen below30. Version specifiers31 can be used to require that a library version exactly matches
a required one, is greater than a required minimum, etc.

 # Requirements without Version Specifiers
 nose
 nose -cov
 beautifulsoup4

 # Requirements with Version Specifiers
 docopt == 0.6.1 # Must be version 0.6.1
 keyring >= 4.1.1 # Minimum version 4.1.1

 # Refer to other requirements files
 -r other-requirements.txt

28 PIP, https://pypi.org/project/pip/ Last access June 2021.

29 Python Package Index, https://pypi.org/ Last access June 2021.

30 Example modified from https://pip.pypa.io/en/stable/cli/pip_install/#example-requirements-file Last access June 2021.

31 PIP version specifiers, https://www.python.org/dev/peps/pep-0440/#version-specifiers Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 30

3.1.6 NPM
NPM32 is the build and packaging system of the Node.js sever and is a popular option for
developing web applications. NPM can be used to initiate a project, manage its dependencies
and build the source code into a distribution-ready package.

The core configuration for NPM is defined in a JSON file named package.json, which holds
information such as the project name, its dependencies, and any scripts to run in order to test
and build the application. NPM offers a command line interface that uses package.json to
create the initial project structure, download the dependencies and manage the available scripts
for performing build and other actions. An example package.json file can be seen below33.

 {
 "name": "test-project" ,
 "description": "A test project" ,
 "main": "src/main.js" ,
 "scripts": {
 "dev": "webpack- dev-server -- inline --progress �w
 config build/webpack.dev.conf.js" ,
 "start": "npm run dev" ,
 "test": "npm run unit" ,
 "build": "node build/build.js"
 },
 "dependencies": {
 "vue": "^2.5.2"
 },
 "devDependencies": {
 "autoprefixer": "^7.1.2" ,
 "babel-core": "^6.22.1" ,
 "babel-eslint": "^8.2.1" ,
 "webpack-merge": "^4.1.0"
 },
 "engines": {
 "node": ">= 6.0.0" ,
 "npm": ">= 3.0.0"
 }
 }

32 NPM, https://www.npmjs.com/ Last access June 2021.

33 Example modified from https://nodejs.dev/learn/the-package-json-guide Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 31

3.1.7 Gradle
Gradle34 is a general-purpose build automation tool and is the default build tool used by Android
Studio to build Android mobile application projects. The main configuration script for a project is
specified in a file usually named build.gradle , and includes information such as the project
name, SDK versions used, build configuration, dependencies, etc. Gradle scripts can be written
in either the Groovy35 or Kotlin36 domain-specific languages (DSLs), with Groovy being the one
used by Android Studio. Android Studio uses multiple Gradle scripts to specify a single project,
describing application-wide or module-wide build configurations. An example Gradle script used
for an Android module is shown below37.

34 Gradle, https://gradle.org/ Last access June 2021.

35 Groovy language, https://groovy-lang.org/ Last access June 2021.

36 Kotlin language, https://kotlinlang.org/ Last access June 2021.

37 Example modified from https://developer.android.com/studio/build Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 32

 apply plugin: 'com.android.application'

 /* Android-specific build options. */
 android {
 compileSdkVersion 28
 buildToolsVersion "30.0.2"

 defaultConfig {
 applicationId 'com.example.myapp'
 minSdkVersion 15
 targetSdkVersion 28
 versionCode 1
 versionName "1.0"
 }

 buildTypes {
 release {
 minifyEnabled true
 }
 }
 }

 /* Dependencies required to build the module */
 dependencies {
 implementation project(":lib")
 implementation 'com.android.support:appcompat-
 v7:28.0.0'
 implementation fileTree(
 dir: 'libs' ,
 include: ['*.jar']
)
 }

3.1.8 Bazel
Bazel38 is an open-source build and test tool similar to Make, Maven, and Gradle. It uses a
human-readable, high-level build language. Bazel supports projects in multiple languages and
builds outputs for multiple platforms. Bazel supports large codebases across multiple

38 Bazel, https://bazel.build/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 33

repositories, and large numbers of users. It uses BUILD files written in Starlark39 in order to
direct Bazel on what to build and how to build it. A build target specifies a set of input artefacts
that Bazel will build plus their dependencies, the build rule Bazel will use to build it, and options
that configure the build rule. A build rule specifies the build tools Bazel will use, such as
compilers and linkers, and their configurations. Bazel ships with a number of build rules covering
the most common artefact types in the supported languages on supported platforms.

The process when running Bazel is as follows. First the BUILD files relevant to the target are
loaded. Then these files are being analysed to check their inputs and dependencies. The build
rules are applied and the action graph is produced. The action graph represents the build
artefacts, the relationships between them, and the build actions that Bazel will perform. Thanks
to this graph, Bazel can track changes to file content as well as changes to actions, such as
build or test commands, and know what build work has previously been done. The graph also
enables you to easily trace dependencies in your code. Finally the build actions are executed on
the inputs until the final build outputs are produced.

Below is an example of two BUILD files in a project tree where the second one has a
dependency on the first.

 cc_library (
 name = "hello -time" ,
 srcs = ["hello-time.cc"],
 hdrs = ["hello-time.h"],
 visibility = ["//main:__pkg__"],
)

39 Starlark language, https://docs.bazel.build/versions/4.1.0/skylark/language.html Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 34

 cc_library (
 name = "hello -greet" ,
 srcs = ["hello-greet.cc"],
 hdrs = ["hello-greet.h"],
)

 cc_binary (
 name = "hello -world" ,
 srcs = ["hello-world.cc"],
 deps = [
 ":hello-greet" ,
 "//lib:hello- time" ,
]
)

3.2 Containerization
The output of the building process is an executable file that can be run in the execution
environment, �H���J�������L�Q���D���K�R�V�S�L�W�D�O�p�V���V�H�U�Y�H�U�����+�R�Z�H�Y�H�U�����W�K�L�V���L�V���Q�R�W���W�K�H���H�Q�G���R�I���W�K�H���V�W�R�U�\�����H�V�S�H�F�L�D�O�O�\���I�R�U��
large applications. In most cases, apart from the executable file(s), one needs to setup the
environment in which to run the application: install the necessary libraries, utility programs,
servers, etc., on which the application depends. As an example, an application predicting future
hospital needs based on monitored history may consist of a web interface and a backend
written in Python. In order for this to run on a target machine, one would need to setup a web
server to server the web interface, install Python for the backend, install Python libraries to
support the communication between the web interface and the backend, install machine-
learning Python libraries used by the prediction mechanism, etc.

Containerization software facilitate the execution of an application in a target machine by
allowing software to run in an isolated environment, complete with all dependencies needed.
The goal is that once the complete container is available, it is all that is needed (apart from the
containerization software itself) to run the application in any target machine.

The most prominent containerization software currently in use is Docker40. Containerization in
Docker is based on the key concepts of images and containers. An image is a miniature file
system containing the necessary files and directory structure needed for an application to run. A
developer can create an image by using an existing image, e.g., of a Linux distribution, and by
adding to it additional layers of files, e.g., installing a web server, or copying files from the

40 Docker, https://www.docker.com/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 35

�G�H�Y�H�O�R�S�H�U�p�V���F�R�P�S�X�W�H�U�����$��container is an isolated environment created from an image. Users can
start a container and run applications inside it, knowing that they will be run in the isolated
environment specified in the image. The container can optionally communicate with other
containers or with the host machine.

In order for a container to use data stored in the host machine, or in order for multiple
containers to share data among them, Docker uses volumes. �9�R�O�X�P�H�V���D�U�H���'�R�F�N�H�U�p�V���P�H�F�K�D�Q�L�V�P��
for persistent storage. They can be created outside the context of any container, mounted to
specific filesystem directories and used by containers to read or write data.

The specification of a Docker image is written in a Dockerfile . There is extensive
documentation available on how to write a Dockerfile 41. A Dockerfile contains instructions
on how to create the isolated environment to be used in a container. As an example, consider
the following Dockerfile , used to build a Node.js web application42.

 FROM node:14

 # Create app directory
 WORKDIR /usr/src/app

 # Install app dependencies
 COPY package.json ./
 RUN npm install

 # Bundle app source
 COPY . .

 EXPOSE 8080
 CMD ["node" , "server.js"]

Each line consists of a Docker command, such as FROM, WORKDIR and COPY. The first line gets
an existing Docker image as a starting point for this image. The node:14 image is a minimal
Linux distribution including only the files necessary to run a Node server. The WORKDIR
�F�R�P�P�D�Q�G���V�H�W�V���W�K�H���F�X�U�U�H�Q�W���Z�R�U�N�L�Q�J���G�L�U�H�F�W�R�U�\���Z�L�W�K�L�Q���W�K�H���L�P�D�J�H�ps filesystem. The COPY command
copies the package.json file (see Section 3.1.6 for details about package.json) from the
�F�X�U�U�H�Q�W���G�L�U�H�F�W�R�U�\���Z�L�W�K�L�Q���W�K�H���K�R�V�W�p�V���I�L�O�H�V�\�Vtem to the working directory of the image. Then the npm

41 Dockerfile description, https://docs.docker.com/engine/reference/builder/ Last access June 2021.

42 Example modified from https://nodejs.org/en/docs/guides/nodejs-docker-webapp/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 36

install command is run inside the image to install the necessary dependencies, as described
in package.json . The code of the application is then copied to the working directory of the
image, so that all relevant files for the webapp are now available in the image. The final two
commands are instructions used whenever a container is executed using this image, that tell
how to run the application: which port to expose and which command to run for running the
application.

3.3 ODIN guidelines
In ODIN, the developers should use a build automation tool such as the ones described in
Section 3.1. Using such a tool allows the formal specification of the build process in the
appropriate configuration files, which will be submitted to version control along with the source
code of the application, and consequently its automation. The developers are free to choose the
build automation tool that is most suitable for their development.

In ODIN, each software component will be wrapped in a Docker image that can be used to run
the component at a specific container within the target deployment. To achieve this, the
developer needs to specify two types of files:

�x The build automation description file, e.g., a Makefile , a package.json file, etc.,
describing the steps needed in order to build the target object, e.g., an executable, a
library, a website, etc., meant to be used by a build automation tool, such as CMake,
NPM or Gradle. This file (or files) needs to be present in the Git repository of the
software component, along with the source code.

�x A Dockerfile , organized in two stages, when possible:

o Stage 1: How to use the selected build automation tool to build the component
out of its source code.

o Stage 2: How to create the Docker image containing the built component.

As a concrete example, the following Dockerfile43 describes how to build a Docker image of an
Angular web application, organized in two stages.

43 Example modified from https://dzone.com/articles/how-to-dockerize-angular-app Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 37

 # Stage 1
 # --- ---
 FROM node:10-alpine as build - step

 RUN mkdir - p /app
 WORKDIR /app
 COPY package.json /app

 RUN npm install
 COPY . /app

 RUN npm run build --prod

 # Stage 2
 # --- ---
 FROM nginx:1.17.1-alpine

 COPY -- from=build-step /app/docs /usr/share/nginx/html

This Dockerfile essentially describes two images, one used to create the built application and
the other being the main image of the component. In Stage 1, the production-level website is
built using the NPM build automation tool and the associated package.json file. A key
difference with the example of Section 3.1.7 is the as build-step part of the first line, which
�V�S�H�F�L�I�L�H�V�� �D�Q�� �D�O�L�D�V���� �q�E�X�L�O�G-�V�W�H�S�r�� �I�R�U�� �W�K�H��first stage image. This image will only be a temporary
image, to support the creation of the main image of Stage 2. The following lines until Stage 2 are
used to copy the necessary files in this temporary image and run the appropriate commands to
build the production website (see Section 3.1 for build tools). The final files of interest are stored
in the /app/docs directory inside the build-step image.

In Stage 2, the produced website is copied to a fresh image, which is the main image of the
component, and the one that will be used to run containers. The main thing to notice is the �w
from=build-step parameter in the COPY command, which instructs Docker to copy files from
another image (the one aliased build-step) to the current working image. Note that the
images of the two steps need not start from the same base image. They are quite independent
in how they are constructed.

The above described two-stage approach permits the complete description of how to create a
runnable Docker image in a single Dockerfile . The developer does not need to first build the
executable and then create a Docker image; creating the Docker image takes care of buiding
the software as well. At the same time, the run-time execution environment is separated from
the build-time execution environment, since they are both containerized in separate images.
However, only the result of the second stage persists and constitutes the output of the
containerization process. This 2nd stage image contains the executable files that are used by the
end-user in a container. The two-stage approach can also be extended to more steps, if more
processes are required in order to build the executables or the Docker image.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 38

4 Testing software
Software testing is a crucial part of the development process prior to release. Proper and
frequent testing ensures the robustness of the developed applications and early captures issues
inadvertently introduced when new functionality is added.

Four levels of software testing are commonly recognized, as depicted in Figure 5:

�x Unit testing: Testing individual units of code in isolation to assess if they fulfil their
desired functionality.

�x Integration testing: Testing the interconnection of components in a larger part of a
system, to assess how they operate in combination.

�x System testing or Developers Acceptance Testing (DAT): Testing the entire system as a
whole.

�x Validation: Broader evaluation of the final phases of development, to ensure that
functional and non-functional requirements are met, and to evaluate user acceptance.

Figure 5: Software testing levels.

�7�K�H�� �q�Vystem �W�H�V�W�L�Q�J�r�� �D�Q�G�� �q�Y�D�O�L�G�D�W�L�R�Q�r�� �O�H�Y�H�O�V�� �L�Q�Y�R�O�Y�H�� �W�K�H�� �H�Q�W�L�U�H�� �V�\�V�W�H�P�� �D�Q�G�� �H�Y�D�O�X�D�W�H�� �L�W�V��
compliance to functional and non-functional requirements. These types of testing will be
�S�H�U�I�R�U�P�H�G�� �D�V�� �S�D�U�W�� �R�I�� �W�K�H�� �D�F�W�L�Y�L�W�L�H�V�� �R�I�� �:�3���� �qODIN Pilots Design, Deployment, Evaluation and
Validation�r���� �,�Q�� �W�K�H�� �F�R�Q�W�H�[�W�� �R�I�� �:�3���� �D�Q�G�� �W�K�L�V�� �G�H�O�L�Y�H�U�D�E�O�H���� �W�K�H�� �U�H�O�H�Y�D�Q�W�� �W�H�V�W�L�Q�J�� �O�H�Y�H�O�V�� �D�U�H�� �q�X�Q�L�W��
�W�H�V�W�L�Q�J�r�� �D�Q�G�� �q�L�Q�W�H�J�U�D�W�L�R�Q�� �W�H�V�W�L�Q�J�r���� �Z�K�L�F�K�� �W�H�Vt the functionality of individual components, their
APIs (Application Programming Interfaces) and their interconnection. Such kinds of tests can be
well-defined enough to be automated and included in the automated DevOps pipeline.

4.1 Unit tests
Unit testing refers to testing individual units of code, such as functions, classes, or modules, in
terms of whether they meet their design requirements. Units are usually small parts of an
application that perform a single task or a small set of tasks. Unit tests evaluate the
performance of these blocks of code in isolation, by providing them with example input and
comparing their output to the expected output.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 39

Unit tests are implemented as additional code written by the developer of the application along
with the code of the main functionality. The unit test is an isolated piece of code that uses a
single unit, e.g. a function, including only the necessary code to use the unit. The test code
provides the unit with input that ideally covers the whole range of input that can be provided to
the unit, including extreme cases or erroneous input, runs the unit and reports the results,
possibly comparing them to the expected output in each case.

Writing and updating unit tests as the code progresses adds an additional burden to the
developer, since they require time and more thinking. However, the benefits significantly
outweigh this burden in the short- and long-run, since unit tests lead to easier maintenance.

Adding and running unit tests in an application at the time of development has several
advantages:

�x They can detect bugs early during code development. Resolving bugs in small pieces of
code is easier than trying to resolve the same bugs after the whole system is
implemented.

�x The process of writing the unit tests forces the programmer to think more carefully about
the unit being developed, of its possible inputs and outputs. This can lead to a clearer
�L�P�S�O�H�P�H�Q�W�D�W�L�R�Q�� �R�I�� �W�K�H�� �X�Q�L�W�p�V�� �I�X�Q�F�W�L�R�Q�D�O�L�W�L�H�V���� �D�Q�� �L�Q�� �W�X�U�Q�� �W�R�� �H�D�V�L�H�U�� �P�D�L�Q�W�H�Q�D�Q�F�H�� �R�I�� �W�K�H��
project.

�x The existence of unit tests allows the programmer to be more confident about
modifications in the code. After making a change in the code, the programmer can run
all unit tests automatically to see if the change has unexpectedly influenced another
component in the system.

Depending on the programming language used, there are several frameworks or libraries that
can be used to assist the developer in defining and running unit tests. Although the programmer
could manually write the tests, if desired, these frameworks reduce the time needed to
construct the unit tests, making it easier to create unit tests together with the functional code.
Some popular choices for common programming languages and environments are the
following:

�x C/C++: Catch244, GoogleTest45, Boost.Test46, NUnit47, Visual Studio native C++ unit
tests48

44 Catch2, https://github.com/catchorg/Catch2 Last access June 2021.

45 GoogleTest, https://github.com/google/googletest Last access June 2021.

46 Boost.test, https://www.boost.org/doc/libs/1_75_0/libs/test/doc/html/index.html Last access June 2021.

47 NUnit, https://nunit.org/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 40

�x Java: JUnit49, TestNG50, JBehave51

�x Python: unittest52, pytest53

�x ROS: rostest54, GoogleTest, Python unittest

�x JavaScript: Mocha55, Jest56, Chai57, Jasmine58

�x R: testthat59

4.2 Integration tests
While unit tests test isolated units of an application, integration tests test the connection
between different parts of an application, or between applications in a larger system. Integration
tests are used to evaluate the performance of large components and their APIs (Application
Programming Interfaces) in terms of their compliance to the functional requirements. Integration
tests are more complex to define than unit tests and they may be more difficult to evaluate,
since they involve larger workflows involving several components.

Integration testing involves the detailed definition of a test case scenario, its execution, either
automatically or manually, and the reporting of the results. Two common types of integration
testing are big-bang testing and bottom-up testing. In big-bang testing, the components are
combined to form the application of interest and then the combined system is used for
integration testing. In bottom-up testing, the low-level pieces of an application are tested first
(e.g. in unit tests), and are then combined to form larger structures in the hierarchy. Tests are
performed iteratively at each level of the hierarchy until the whole application is tested.

48 Visual Studio native C++ tests, https://docs.microsoft.com/en-us/visualstudio/test/getting-started-with-unit-testing?view=vs-
2019&tabs=mstest Last access June 2021.

49 JUnit, https://junit.org/junit5/ Last access June 2021.

50 TestNG, https://testng.org/doc/ Last access June 2021.

51 JBehave, https://jbehave.org/ Last access June 2021.

52 Python unittest, https://docs.python.org/3/library/unittest.html Last access June 2021.

53 Python pytest, https://docs.pytest.org/en/6.2.x/ Last access June 2021.

54 ROS rostest, http://wiki.ros.org/rostest Last access June 2021.

55 Mocha, https://mochajs.org/ Last access June 2021.

56 Jest, https://jestjs.io/ Last access June 2021.

57 Chai, https://www.chaijs.com/ Last access June 2021.

58 Jasmine, https://jasmine.github.io/ Last access June 2021.

59 R testthat package, https://testthat.r-lib.org/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 41

Depending on the complexity of an integration test scenario, it may be executed either
automatically or manually. In automatic testing, the test scenario is written in a formal manner,
e.g. as a Jenkins pipeline (see Section 8.1.1 for a description of Jenkins), which can then be run
automatically by a testing framework. In manual testing, the individual steps of a test scenario
are written in detail and are then performed by a human operator. At each step, the expected
output is specified, so that the tester can report the success or failure of each step. Manual
testing systems such as Squash60 can be used to facilitate the definition of test case scenarios,
and reporting the test results.

4.3 Test server infrastructure
A test infrastructure will be provided to facilitate the task of testing the software components
prior to production deployment, in an environment intended to resemble operating conditions
that will be present in the actual pilot sites.

The test infrastructure will be provisioned in the cloud infrastructure that Inetum has at its
datacentre located in Murcia, Spain. Table 3 provides a brief description of its design and
performance features.

60 Squash, https://www.squashtest.com/?lang=en Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 42

Table 3: Test environment cloud datacenter features.

Scope Features

Facility

�x Tier IV. 99.999% availability.
�x Anti-seismic construction with insulated electromagnetic.
�x Redundant infrastructure for mission environments review.
�x 1.2 MW of power maximum in datacentre of high density.
�x Double electric ring with 2 UPS and 2 groups generators with 1-week

autonomy.
�x �*�5�(�(�1���,�7���q�%�D�V�H���'�H�V�L�J�Q�r�����E�H�L�Q�J�����������P�R�U�H���H�I�I�L�F�L�H�Q�W���L�Q���W�K�H���F�R�Q�V�X�P�S�W�L�R�Q���R�I��

energy.

Security

�x Specialized security personnel 24x7.
�x Intelligent indoor and outdoor video surveillance system with intruder

detection.
�x Access to critical rooms controlled by facial biometrics (TI, MPOE, SOC,

NOC, etc.).
�x Very Early Smoke Detection Air (VESDA).
�x Water extinguishing system mist, avoiding the evacuation of the

datacentre.

Operation
�x Customized 24x7 support backed by technical team of experts with

presence onsite IT and Industrial staff.
�x ITIL, SSAE16, ISO, ICREA standards level 5.

Communication

�x 2N end-to-end redundancy.
�x Two independent links with diversified access and connection to two

neutral points (Telvent and Interxion).
�x Own public address, balanced between the two links
�x Safety equipment Service Provider logic, with protection against DDOS

attacks.
�x 2 Multi-Carrier zones (MPOE) for service providers with exterior fingerprint

access.

The cloud test infrastructure for the ODIN Project uses private IP addresses to communicate
inside the cloud, and public IP addresses to communicate over the Internet. Public IP addresses
allow for secure communication from origins to prevent unauthorized access, and each
deployed instance has allocated one public IP. The cloud implements firewall protection that
allows for the definition of rules to restrict access from specific sites and to specific resources
inside the virtual space allocated for the project.

4.4 ODIN guidelines
The developers of ODIN components are encouraged to include unit tests in their components,
update them as code progresses and new use cases are added, and execute them when
making modifications to ensure that no bugs are introduced to existing code. The developers
are free to choose the most appropriate unit testing framework for their applications,
corresponding to the programming language and environment used.

Each project partner will be responsible for unit testing their own modules and components. Unit
tests should at least be run prior to the release of a component (see Section 5). After major
changes are made in a component, unit tests should be executed to ensure that the
functionality is as expected and that no other parts of the component are damaged. Whenever

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 43

possible, unit tests should be included as part of the automated DevOps pipeline, in the Jenkins
scripts used for orchestration (see Section 8.2 for guidelines regarding Jenkins-based
orchestration), so that their execution is triggered upon pushing code to the GitLab server.

After all components of a sub-system of the ODIN platform are implemented, integration tests
will be performed to ensure that the combined components operate as expected. Integration
tests should be automated when possible, or manually defined otherwise.

Automated integration tests should be written as Jenkins pipelines, so that they can be
automatically triggered upon changes in the source code of the components. A Jenkins pipeline
can define the steps to take to perform the integration test, failing upon failure of a specific step.
Pipelines can be blocked using the input Jenkins step when confirmation from a human tester
is needed before resuming the pipeline. The test results can be stored and reported by the
�S�L�S�H�O�L�Q�H���L�W�V�H�O�I�����E�\���P�D�N�L�Q�J���X�V�H���R�I���W�K�H���q�S�R�V�W�r���E�O�R�F�N�V of the pipeline script.

Manual integration tests should be written in cases where automated tests are difficult to define.
For each integration test, a detailed description of the test scenario needs to be specified,
detailing the steps to take and the expected output of each step. The tests should be executed
by a human tester and the result of each step recorded. Testing platforms such as Squash61 can
be used for this purpose. The decision to use such platforms will be taken later during the
course of the project.

The initial execution environment of the integration tests will be the ODIN testing infrastructure
provided by Inetum and described in Section 4.3. A detailed design of the services and provided
by the testing infrastructure will be provided as part of the deliverables of WP7, when application
requirements are specified. Details about how to access the testing server, including URLs and
authentication, will be provided to the project partners at the time the testing server is setup.
After the integration tests are run successfully in the testing infrastructure, they will be
transferred to the actual pilot sites and robotic applications.

Each partner is responsible to write integration tests whenever their components use other
components of the same or other partners. Sample input data for the execution of the
integration tests can be provided by the component owners or the integration team. The
DevOps and integration team is responsible for the execution of the integration tests, either by
setting up and the appropriate Jenkins pipelines, together with component providers, and
making sure they are correctly triggered and executed, or by running the manual tests and
reporting the results.

61 Squash, https://www.squashtest.com/?lang=en Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 44

5 Software release
Once a piece of software has been built and tested, it is ready to be released so that it is
available for use by end-users. This section describes the types of releases foreseen for the
ODIN components, as well as the repositories that will be used to publish released software.

5.1 Software release versions
According to ISO/IEC/IEEE 12207:201762, in a typical software development lifecycle, the
software passes through specific stages of development, according to its maturity and
readiness. The most typical stages of development are the following.

�x Pre-alpha: This is the stage of initial software development and unit testing, before
formal testing by designated testing procedures.

�x Alpha: In this stage, developers test the functionality of the software through a series of
white-box, black-box or gray-box techniques, in order ensure that all features are
present and to address major bugs. Software released at this stage may be erroneous
and unstable.

�x Beta: In this stage, software is tested prior to being released to the general public. Tests
at this stage are focused on customer acceptance, including usability tests. Software at
this stage is used for demonstrations to the general public, but may still be unstable.

�x Stable release: In this stage, the software is ready to be released to the general public
and is in a fully functional, stable state. This version may also be digitally signed, to
guarantee its integrity to customers.

Once software is released to the public, it is still under constant testing and reviewing, either by
the public through bug reporting systems, or by the developers themselves, through bug
detection and re-designing of functionalities. Further versions of the software pass through the
above stages prior to public release.

5.2 Tagging versions
Tagging software versions is important in order to keep track of changes through the various
releases. Proper tagging permits dependency handling tools, such as the ones described in
Section 3.1, to install the proper versions while building software from source or creating Docker
images.

62 ISO/IEC/IEEE 12207:2017. Standards catalogue. International Organization for Standardization. November 2017. Available at:
https://www.iso.org/standard/63712.html. Retrieved 16 June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 45

Semantic versioning63 is a principled approach to release tagging, where the version numbers
have specific meaning useful to the developer and to automated tools. In semantic versioning, a
software release is tagged with a version number of the following format:

MAJOR.MINOR.PATCH

e.g., 1.4.2, optionally followed by pre-release tags appended after the patch number, separated
by a dash, e.g. 1.0.0-alpha.

The components of the tag incremented with the following rules:

�x The MAJOR version number is incremented when there is a change in the public API
exposed by the software.

�x The MINOR version number is incremented when new functionality is added, in a
backwards compatible manner, without affecting the existing exposed API.

�x The PATCH version number is incremented when backwards compatible bug fixes are
made.

After a software version is released with its tag, it must not be altered in any way. Any changes
to the software must be released as a new version. This prevents problems with dependencies,
since, once a particular version is used by an application, it stays the same at all times.

For initial development, prior to the first release, the MAJOR version number should be 0, e.g.
�Y�H�U�V�L�R�Q�� �������������� �2�Q�F�H�� �W�K�H�� �I�L�U�V�W�� �V�R�I�W�Z�D�U�H�� �U�H�O�H�D�V�H�� �L�V�� �P�D�G�H���� �D�Q�G�� �W�K�H�� �V�R�I�W�Z�D�U�H�p�V�� �$�3�,�� �L�V�� �G�H�I�L�Q�H�G���� �W�K�H��
MAJOR number takes the value of 1 and is then incremented only whenever an API change is
made.

5.3 Docker registry
Docker provides the ability to create a registry of Docker images, for dockerized software that is
ready to be released. The Docker registry64 is a service for storing and delivering built images,
available in different versions specified by tags. The user can upload and download images
using push and pull commands from the command line.

�%�\���G�H�I�D�X�O�W�����'�R�F�N�H�U���U�H�J�L�V�W�U�\���X�V�H�V���W�K�H���K�R�V�W���P�D�F�K�L�Q�H�p�V���I�L�O�H�V�\�V�W�H�P���I�R�U���V�W�R�U�L�Q�J���W�K�H���L�P�D�J�H�V�����+�R�Z�H�Y�H�U����
cloud-based systems can also be used for large deployments, such as Amazon S3 buckets,
Microsoft Azure, etc. Docker registry handles user authentication through TLS and basic
authentication. Docker registry can be configured to provide notifications to the developers in
response to events that happen in the registry, such as new available versions.

63 Semantic versioning, https://semver.org/ Last access June 2021.

64 Docker registry, https://docs.docker.com/registry/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 46

Docker registry can be used to setup a private registry, with limited access to authorized
developers. For larger projects, a public registry can be setup. Docker Hub65 is such a public
service, supporting all functionalities of the Docker registry, but allowing public access to the
images, facilitating the development of large-scale software projects.

5.4 ODIN guidelines
During the development of a software component, there will be at least two types of software
release: Intermediate and stable. Intermediate releases cover the pre-alpha, alpha, and beta
phases described in Section 5.1 and may contain new added functionality, small changes, bug
fixes, improvements, etc. Stable releases are intended to be fully tested versions of the
components, ready to be publicly released and used by other developers, and aligned with the
overall ODIN platform version.

Regarding the overall ODIN platform, three major releases are expected during the course of
the project, expected in M12, M24 and M36, respectively. Each version will include specific
components, reflected in the ones available in the Docker registry, and used in the pilot sites.

The released components should follow the Semantic Versioning approach described in Section
5.2. In order to avoid frequent changes of the MAJOR version number, it is advised that the API
exposed by each component is thoroughly designed during each phase of development, so that
it covers all the foreseen cases of interaction.

The released components will in general have their own lifecycle, each maintaining its own
versioning numbers, according to their status. This numbering may be different than the
numbering used for the overall ODIN platform. A component may in parallel be implementing a
new feature in a separate branch while some fix is made in the master branch (see the GitFlow
workflow paradigm in Section 2.2.3.1). A particular ODIN platform release may consist of
components of various versions, with the restriction that these versions are stable releases of
the components.

Each ODIN platform release will be accompanied by the full list of the components it consists of,
along with their stable version numbers. This list will be essentially formalized in the docker-
compose files (or other similar composition files, e.g., Kubernetes YAML files) that will specify
�K�R�Z���W�R���G�H�S�O�R�\���W�K�H���S�O�D�W�I�R�U�P�p�V���F�R�P�S�R�Q�H�Q�W�V. As described below in Section 6.3, these files will be
published and managed in the GitLab server similar to the source code of the components, but
in a different repository, since they describe deployments of composite applications instead of
single components. The stable releases of the ODIN platform will only consist of stable releases
of their components.

65 Docker Hub, https://hub.docker.com/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 47

In ODIN, a private Docker registry will be used for releasing components. The Docker registry
will be available at:

https://registry.odin-smarthospitals.eu

In the initial phases of the project, the registry will be kept private with access provided only to
the consortium members. A migration to a public registry, such as Docker Hub, may be
�F�R�Q�V�L�G�H�U�H�G�� �G�X�U�L�Q�J�� �W�K�H�� �F�R�X�U�V�H�� �R�I�� �W�K�H�� �S�U�R�M�H�F�W���� �I�R�O�O�R�Z�L�Q�J�� �W�K�H�� �G�H�F�L�V�L�R�Q�V�� �U�H�J�D�U�G�L�Q�J�� �W�K�H�� �S�O�D�W�I�R�U�P�p�V��
exploitation in the corresponding work packages.

Access to the Docker registry will be provided to all consortium members in the first months of
the project. User authentication will be handled through the mechanisms described in Section 9.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 48

6 Deployment
Deployment of an application means its installation and use at the end-user environment, which
for the ODIN project is the computing infrastructure of the pilot sites (hospitals). Deployment
involves selecting and composing the necessary published components and services in order to
perform a task of interest. This section describes the tools that will be used in ODIN for
composing released components into complete applications, and for automatically updating
them once new versions are available.

6.1 Service composition
Service composition deals with composing software modules into large applications. When it
comes to software modularity, there are two major approaches:

�x Monolithic applications

�x Service-oriented software

In monolithic applications, the entire business logic is contained in a single application, which is
mostly independent from other applications. Monolithic applications are usually written in a
single language or software development framework and usually result in a large codebase with
the source code for the entire application. Modularity in monolithic applications is achieved in
�W�K�H���V�R�X�U�F�H���F�R�G�H�����H�P�S�O�R�\�L�Q�J���W�K�H���O�D�Q�J�X�D�J�H�p�V���P�H�F�K�D�Q�L�V�P�V���V�X�F�K���D�V���I�X�Q�F�W�L�R�Q�V���D�Q�G���F�O�D�V�V�H�V��

On the other hand, in service-oriented applications, the business logic is split into a number of
small applications that communicate with each other through well-defined APIs (Application
Programming Interfaces). Each service, also referred to as micro-service, is responsible for a
well-defined subset of the complete application logic. It may be written in its own language or
framework and maintained by a different set of developers. The logic of the complete application
is achieved by composing these software modules.

Figure 6: Monolithic vs. micro-service applications.

There are advantages and disadvantages in both approaches. Monolithic applications are easy
to deploy and test, since they consist of a single software component. However, they are
difficult to scale up. Adding new features and fixing bugs requires altering the whole application,
and it is likely that changes in one part will affect other parts of the application as well. Due to
this fact, maintaining and updating the software is harder and more time consuming.

The service-oriented architecture was created to address this scalability issue. Each service is
self-contained and quite independent from the others, so adding new functionality or resolving
bugs is faster and less likely to cause problems in other parts of the whole application. If a
s�H�U�Y�L�F�H�p�V���$�3�,���L�V���Z�H�O�O-defined and respected, the application behind it could change altogether or
replaced by another, without affecting other services using the API. However, micro-service

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 49

applications are more difficult to deploy. Instead of deploying a single application, one needs to
deploy a set of applications and manage their communication through proper configuration files.

Micro-service-based applications have one more advantage compared to monolithic
applications. Creating small applications that perform a single task well is beneficial in software
development in general. One can focus on how to perform the task robustly and fast, without
needing to deal with other irrelevant tasks. The developer is encouraged to split the logic into
small pieces which are easy to reason about. This makes code clearer, and easier to modify by
other developers or the same developer in the future. The resulting pieces of software are
reusable and can be combined with other pieces in ways that were not originally planned.

The composition of micro-services requires systems that manage how the services are
connected. These orchestrators manage which services should start/stop at any time, how they
can be discovered by other components, which ports they expose, etc. This is an extra level of
management (and complexity) added by the micro-service architecture, but it allows the
creation of highly scalable applications that are easy to maintain by diverse teams of
developers.

The containerization functionalities offered by Docker significantly facilitate the creation of
micro-service-based applications. Each service can be shipped in its own Docker container,
self-contained with any dependencies of the system in which it was developed, and ready to be
integrated with other containerized components. On top of these self-contained services, tools
for service composition operate to manage their interconnection in large applications.

6.2 Tools for service composition
This section briefly discusses the most popular tools used for the composition of Docker
containers in large applications.

6.2.1 Docker-compose
Docker-compose66 is the most direct way to compose a number of Docker images to create a
larger application. Docker-compose is already available in a Docker installation. Docker-
compose reads the description of a composition from a designated file usually named docker-
compose.yml . The docker-compose.yml file, written in the YAML syntax, describes which
Docker images to use, which ports they expose, how to setup the environment for each service,
etc.

As an illustrative example, consider the following docker-compose file, used to deploy a web
application67.

66 Docker-compose, https://docs.docker.com/compose/ Last access June 2021.

67 Example modified from https://github.com/compose-spec/compose-spec/blob/master/spec.md Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 50

 version: "3.9"

 services:
 frontend:
 image: awesome/webapp
 ports:
 - "443:8043"

 backend:
 image: awesome/database
 volumes:
 - db-data:/etc/data

�,�W���V�S�H�F�L�I�L�H�V���W�Z�R���V�H�U�Y�L�F�H�V�����Q�D�P�H�G���q�I�U�R�Q�W�H�Q�G�r���D�Q�G���q�E�D�F�N�H�Q�G�r. For each service, it specifies which
Docker image to use, as well as additional information needed for its deployment. For the front-
�H�Q�G���V�H�U�Y�L�F�H�����W�K�H���q�D�Z�H�V�R�P�H���Z�H�E�D�S�S�r���L�P�D�J�H���L�V���X�V�H�G�����Z�K�L�F�K���W�K�H���S�R�U�W�V���W�R���X�V�H���D�U�H���D�O�V�R���V�H�W�X�S�����)�R�U��
the back-�H�Q�G�����W�K�H���q�D�Z�H�V�R�P�H���G�D�W�D�E�D�V�H�r���L�P�D�J�H���L�V���X�V�H�G���W�R���V�H�W�X�S���W�K�H���D�S�S�O�L�F�D�W�L�R�Q�p�V���G�D�W�D�E�D�V�H�����Z�L�W�K��
an additional configuration for the data volumes to use. Each service can refer to other services
by using the names specified in the docker-compose file.

The docker-compose.yml file is parsed by the docker-compose engine, which pulls the
necessary images from the host machine or the remote repositories, and creates the necessary
environments for them to run and interact. The end result is that a set of Docker containers are
executed and communicate with each other. In the example above, two servers would execute,
one holding the backend database and the other holding the webapp UI, which accesses this
database.

Docker-compose supports a rich set of configuration options allowing to design a wide variety of
workflows.

6.2.2 Docker swarm
Docker swarm is a group of docker applications that are joined together in a cluster. Docker
swarm68 is therefore a mode of operating the Docker-compose engine described above in
Section 6.2.1, so that the complete application can be executed in a distributed manner, e.g. in
a computer cluster. The configuration of Docker-swarm is based on docker-compose.yml
files, similar to docker-compose. However, Docker swarm facilitates cluster deployment, by

68 Docker swarm, https://docs.docker.com/engine/swarm/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 51

offering orchestrated monitoring, resource allocation, load balancing, etc. The fact that in a
Docker swarm there is one manager node and several worked nodes is the reason for achieving
high quality resource management and cluster efficiency.

When running in Docker in swarm mode, the user can deploy several services as a stack. A
stack is defined in a docker-compose.yml file, similar to the ones used by docker-compose.
When deploying a stack, the user can monitor the running services and start/stop individual
services as needed, or stop the entire stack at once.

Some of the most valuable features69 of a Docker swarm are: a) decentralized access, b)
increased security (because of the nature of intra-node communications), c) load balancing, d)
scalability and e) roll-back in case the orchestrators need to revert their changes in a previous
safe environment.

6.2.3 Kubernetes
Kubernetes is a platform for managing containerized workloads and services70. It is portable,
extensible and open-source, thus providing a good way to bundle and run large-scale
applications. In a production environment, the orchestrator needs to manage the containers that
run the applications and ensure that there is no downtime. Kubernetes is able to provide: a)
service discovery and load balancing (containers are exposed using IP addresses), b) managing
and mounting storage systems, c) rollouts and rollbacks (automate change of container states),
d) resource management of containers (CPU and RAM), e) respawning containers that fail and
e) storing security information as secrets.

Kubernetes is organized in Nodes. A node may be a virtual or physical machine, depending on
the cluster. Each node is managed by the control plane and contains the services necessary to
run pods. Nodes contain information regarding the addresses that containers use to
communicate, the condition of pods and the capacity. An example of a node specification is
shown below.

69 Docker swarm features, https://www.simplilearn.com/tutorials/docker-tutorial/docker-swarm Last access June 2021.

70 Kubernetes, https://kubernetes.io/docs/concepts/overview/what-is-kubernetes Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 52

 {
 "kind" : "Node" ,
 "apiVersion" : "v1" ,
 "metadata" : {
 "name": "10.240.79.157" ,
 "labels" : {
 "name": "my-first- k8s- node"
 }
 }
 }

As mentioned previously, Kubernetes runs your workload by placing containers into Pods to run
on Nodes. Pods are the smallest deployable units of computing that you can create and
manage in Kubernetes. To be more specific, they are a group of one or more containers, which
share storage and network resources. Pods are organized in templates, such as the one below.

 apiVersion : batch/v1
 kind : Job
 metadata :
 name: hello
 spec:
 template :
 # This is the pod template
 spec:
 containers :
 - name: hello
 image: busybox
 command: ['sh' , '- c' ,
 'echo "Hello, Kubernetes!" && sleep 3600']
 restartPolicy : OnFailure

6.2.4 Amazon EC2 Container Service (ECS)
Amazon Elastic Container Service (Amazon ECS)71 is a container orchestration service
providing easy deployment, management and scaling up of large applications. The containers

71 Amazon ECS, https://aws.amazon.com/ecs/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 53

are deployed in an AWS (Amazon Web Services) cloud cluster, allowing applications to scale up
easily. It adopts a serverless architecture, where the computing resources are automatically
allocated, so that the user does not need to deal with server configuration, reducing thus the
time needed for setting up a deployment. Amazon ECS provides a free trial, with full-features
available according to the available pricing schemes.

6.2.5 Apache MESOS
Apache MESOS72 is a resource allocation and orchestration system for running applications on
computing clusters. MESOS allocates resources to distributed execution frameworks such as
Hadoop73 and MPI74. The core part of MESOS is the master daemon, which manages
distributed agent daemons deployed on cluster nodes, on which tasks are run according to the
MESOS framework used. The master daemon decides the number of computational resources
to offer to each framework, according to the selected allocation policy (e.g., fair sharing, strict
priority, etc.). The scheduler of the framework running the application can accept the offer and
select which of the resources to allocate to the tasks to run, passing this allocation to MESOS,
which executes the tasks in the selected agents. MESOS can be used to run containerized
applications, using either Docker containers or containers of �0�(�6�2�6�p�V�� �R�Z�Q�� �F�R�Q�W�D�L�Q�H�U�L�]�D�W�L�R�Q��
system.

6.2.6 Nomad
Nomad75 is an orchestration system that focuses on cluster management and scheduling,
aiming to reduce the complexity added with other types of features such as service discovery
and monitoring offered by other orchestrator systems, such as Kubernetes. Nomad can scale
up to thousands or millions of nodes and can run not only containerized applications, but also
virtualized and standalone ones.

6.2.7 Comparison
The characteristics of the service composition tools presented in the previous sections are
summarized and compared in Table 4. For ODIN, Docker-compose and Docker swarm are
selected for container orchestration, with Kubernetes also being an alternative that can be setup
during the course of the project, if requirement analysis reveals that its functionalities cover
better the needs of hospital deployments. The selection of these tools is based on the
combination of free distribution, ease of setup and configuration, ability to scale to computing
clusters and wide community. The ease of setup of Docker-compose and Docker swarm make

72 Apache MESOS, http://mesos.apache.org/ Last access June 2021.

73 Apache Hadoop, https://hadoop.apache.org/ Last access June 2021.

74 OpenMPI, https://www.open-mpi.org/ Last access June 2021.

75 Nomad, https://www.nomadproject.io/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 54

them the first choice considered during the early phases of the project. Familiarity of the
consortium members and the DevOps team with these tools is also a reason for their selection.

Table 4: Comparison of service composition tools.

 Docker-
compose

Docker
swarm

Kubernetes Amazon
ECS

MESOS Nomad

Free yes yes yes no yes yes

Ease of setup high high low high low high

Resource allocation no yes yes yes yes yes

Scalability low medium high high high high

Built-in features low medium high high medium medium

6.3 ODIN guidelines
In ODIN, we will use docker-compose for deploying components in the target environment. For
each deployable system of ODIN, the developers should create a docker-compose.yml file
that describes how to compose the system from individual components, e.g., a web application
by composing a server, a database and a GUI. The docker-compose.yml file will specify all
needed configuration for an application, which may include the Docker images to use, ports to
make available, environment variables, etc.

The docker-compose.yml �I�L�O�H�� �Z�L�O�O�� �E�H�� �X�S�O�R�D�G�H�G�� �W�R�� �W�K�H�� �S�U�R�M�H�F�W�p�V��GitLab server, at
https://gitlab.odin-smarthospitals.eu, and submitted to version control, similar to the source
code of the components. However, the docker-compose.yml file will be stored in a different
repository than the one used for the source code. In general, there will not be an one-to-one
correspondence between a component and a deployable system, since the system may be
composed of multiple components, hence the docker-compose.yml will not correspond to a
single source code repository. For this reason, there will be a separate repository where all
docker-compose.yml files will be stored. The docker-compose files in this repository will also
serve as a registry for all deployable services in ODIN.

To coordinate applications running in multiple computing nodes, Docker swarms will be used, at
least at the initial phases of the project. Composite applications will be deployed as Docker
stacks, specified in the corresponding docker-compose.yml files. The services in the deployed
stacks will be monitored either through the command line interface, or through the Graphical
User Interface, as described in Section 7.4.

If during the course of the project, and through the analysis of the system and end-user
requirements, it is decided that Docker swarms are not adequate for the criticality of the hospital
pilot site environment, container composition and orchestration may be switched to Kubernetes,
which offers increased resilience for critical large-scale applications. This decision will be taken
�Z�L�W�K�L�Q�� �W�K�H�� �D�F�W�L�Y�L�W�L�H�V�� �R�I�� �7���������� �W�K�U�R�X�J�K�� �F�R�R�U�G�L�Q�D�W�L�R�Q�� �D�P�R�Q�J�� �W�K�H�� �S�U�R�M�H�F�W�p�V�� �W�H�F�K�Q�L�F�D�O�� �S�D�U�W�Q�H�U�V�� �D�Q�G��
any decisions will be recorded in relevant deliverables of WP4 or WP7.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 55

7 Operation monitoring and feedback
collection

During the operation phase, an application is being used by the end-users performing its
specified functionality. The feedback collected by the end-users during this phase regarding the
operation of the software and any problems and issues that may arise from its usage is very
important for developers. Using this feedback, they can solve problematic behaviour, or alter
the functionality of components in order to better satisfy user requirements.

Operation monitoring refers to the ability to manage a deployment, i.e., have an overview of the
services that are running in the deployment, start/stop services as needed, view service logs,
update services to newer versions, etc. This type of monitoring can be achieved either through
the command line interface of the container orchestration tools (Docker swarms, Kubernetes,
etc.) or, more popularly, through Graphical User Interfaces (GUIs) provided for these tools.
Section 7.1 describes the available GUIs for monitoring deployments.

On top of these monitoring tools, data analytics tools can be applied to analyse the service logs
and collect KPIs (Key Performance Indicators) that provide insight in the operation of the system
and problematic parts, and provide hints to the resolution of issues. Such tools are discussed in
Section 7.2.

Collection of feedback from the operation of the pilot sites is also important in order to
understand if the system operates as expected, adhering to the system and user requirements.
Feedback collection mechanisms are discussed in Section 7.3, while a more extensive analysis
will be performed as part of T3.4 and reported in D3.7 �t �'���������� �qTechnical Support Plan and
Operations�r��

7.1 Graphical User Interfaces (GUIs) for managing
deployments

The tools for container composition and deployment management described in Section 6
provide the means to manage the deployments, e.g., starting and stopping services, viewing
logs, etc. However, these functionalities are usually provided through the command line, making
it hard for a user to have an overview. There are Graphical User Interfaces (GUIs) available that
provide a comprehensive view of a deployment through a web interface, that greatly facilitate
the deployment monitoring. Some of the most popular ones are discussed below.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 56

7.1.1 Swarmpit
Swarmpit76 is an open-source container management solution for monitoring and managing
Docker swarm installations. It provides features such as service deployment, service
management, service discovery, shared access across multiple users and integration with
private Docker registries. A screenshot of Swarmpit can be seen in Figure 7.

Figure 7: Screenshot of the Swarmpit GUI.

7.1.2 Kubernetes dashboard
Kubernetes dashboard77 is the default dashboard of the Kubernetes orchestration framework. It
can be used to deploy an application on a Kubernetes dashboard, monitor its operation,
manage resources, scaling applications, starting pods, etc. A screenshot of the Kubernetes
dashboard is shown in Figure 8.

76 Swarmpit, https://swarmpit.io/ Last access June 2021.

77 Kubernetes dashboard, https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 57

Figure 8: Screenshot of the Kubernetes dashboard GUI.

7.1.3 OpenShift
�5�H�G�+�D�W�p�V���2�S�H�Q�6�K�L�I�W78 is a container management GUI for the Kubernetes orchestrator. It offers
several features, including automated installation and upgrades of the deployed applications,
while focusing on security across the stack of deployed containers and through the lifecycle of
an application. A screenshot of OpenShift can be seen in Figure 9.

78 RedHat OpenShift, https://www.openshift.com/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 58

Figure 9: Screenshot of the OpenShift GUI.

7.1.4 Portainer
Portainer79 is an open-source container management tool that can be used to monitor
applications deployed using Docker, Docker swarm, Kubernetes, and other container
orchestration frameworks. It can be used to deploy applications and view their status, providing
secure access to authorized users. A screenshot of Portainer can be seen in Figure 10.

79 Portainer, https://www.portainer.io/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 59

Figure 10: Screenshot of the Portainer GUI.

7.1.5 Comparison
The characteristics of the deployment management GUIs presented in the previous sections are
summarized and compared in Table 5. All GUIs offer a wealth of features for deployment
monitoring and management, so the decision of the one to use is mostly based on free
�D�Y�D�L�O�D�E�L�O�L�W�\���� �W�K�H�� �N�L�Q�G�V�� �R�I�� �R�U�F�K�H�V�W�U�D�W�R�U�V�� �V�X�S�S�R�U�W�H�G�� �D�Q�G�� �R�Q�� �W�K�H�� �I�D�P�L�O�L�D�U�L�W�\�� �R�I�� �2�'�,�1�p�V�� �W�H�F�K�Q�L�F�D�O��
partners. Portainer is selected to be used in ODIN, since it can work with several types of
orchestrators, including Docker swarm and Kubernetes, which will be used in ODIN.

Table 5: Comparison of deployment management GUIs.

 Swarmpit Kubernetes
dashboard

OpenShift Portainer

Open-source yes yes no yes

Supported
orchestrators

Docker
swarm

Kubernetes Kubernetes
Docker, Docker
swarm,
Kubernetes, etc.

Built-in features high high high high

7.2 Operation monitoring KPIs
Despite the capabilities of the system management tools (as described in Section 7.1), which
already are capable of monitoring many container-wide and system-wide metrics, there will be
the need to monitor some specific KPIs of the platform and services running on top which will
not be covered by these tools. Task 4.6 will tackle this need from a resource perspective, trying
to bridge technology and management monitoring.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 60

From a functional perspective, monitoring all KPIs, including container-wide and system-wide,
as well as service-specific and business metrics, is extremely important. It is the only way to
determine if the system is running as it should, analysing any problems, auditing and making
data-driven decisions at all levels. Additionally, the unification of these metrics into a single
process will aid in the monitoring, reporting and analysis process, by providing perspective and
context as well as extended services, such as anomaly detection, preventive alerts, corrective
action proposal, and support requesting, among many other.

There are many existing open source system monitoring tools. There are extensible concepts
such as using InfluxDB80 for storing generic time series; or Prometheus81 which also offers
different access modes, queries for data and alerting. These tools offer integration with many
other different sources and platforms such as the popular dashboard Grafana82. Other
monitoring systems offer a more out-of-the-box experience, like Nagios83 or Zabbix84, however
they are more system centric and less flexible.

Another important aspect of monitoring is log management. There are many open source
centralization, parsing and processing systems, including the following:

�x Elastic Stack85, commonly abbreviated as ELK for Elasticsearch, Logstash, and Kibana

�x Graylog86

�x Fluentd87

�x NXlog88

They are all extremely configurable and adaptable, particularly to containerized environments.
Most offer additional features for searching within logs, linking different logs, providing anomaly
detection, as well as parsing for further metric extraction.

It should be noted that the KPI collection tools described above are not limited to the DevOps
pipelines. The same tools can and will be used for the ODIN platform as a whole. More detailed

80 InfluxDB, https://www.influxdata.com/ Last access June 2021.

81 Prometheus, https://prometheus.io/ Last access June 2021.

82 Grafana, https://grafana.com/ Last access June 2021.

83 Nagios, https://www.nagios.org/ Last access June 2021.

84 Zabbix, https://www.zabbix.com/ Last access June 2021.

85 Elastic Stack, https://www.elastic.co/ Last access June 2021.

86 Graylog, https://www.graylog.org/ Last access June 2021.

87 Fluentd, https://www.fluentd.org/ Last access June 2021.

88 NXlog, https://nxlog.co/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 61

descriptions of the available options and selected tools will be provided in the deliverables of
WP3 and WP7, regarding the ODIN platform and the KPI evolution, respectively.

7.3 Collecting feedback from pilot sites
An important part of the operation procedures is the collection of feedback in relation to the
incidence management. All the procedures addressing the management of issues, bugs or
requests will be fully specified in T3.4 and reported in the corresponding deliverables.

One of the goals of the task will be to work as closely as possible to the real-life operation, as
such, we are proposing to take as basis the ITIL v4 framework, which describe an operative
model for the delivery of technological services and products.

In its new version it reflects recent trends in software development and IT operations and
includes advice on how to apply philosophies such as Agile, DevOps and Lean in the domain of
service management. This new, more flexible version of ITIL has a more holistic approach to
service management and focuses on "end-to-end service management, that is, from demand to
value." Although it contains a total of 34 practices (14 general management practices, 17
service management practices and 3 technical management practices) in this case we will only
apply Service management practices:

�x Service desk: The purpose of this practice is to capture the demand for resolution of
incidents and service requests. It should also be the entry point and single point of
contact for the service provider with all its users.

�x Incident management: The purpose of the incident management practice is to minimize
the negative impact of incidents by restoring normal service operation as quickly as
possible.

�x Service request management: The purpose of the service request management practice
is to support the agreed quality of a service by handling all predefined and user-initiated
service requests in an effective and user-friendly manner.

There are multiple tools to implement the procedures that will be defined to provide support to
�W�K�H���S�L�O�R�W�V�p���V�L�W�H�V���G�X�U�L�Q�J���W�K�H���G�H�S�O�R�\�P�H�Q�W���D�Q�G���R�S�H�U�D�W�L�R�Q���R�I���W�K�H���H�[�S�H�U�L�P�H�Q�W�V�����7�K�H���I�L�Q�D�O���V�H�O�H�F�W�L�R�Q���Z�L�O�O��
be made in T3.4 according to the analysis of requirements that are being gathered from the
different stakeholders. An initial identification and comparison of features of tools for service
desk management is provided below.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 62

7.3.1 Faveo Helpdesk
Faveo89 is a free web-based ticketing system build on the Laravel framework, it provides
businesses with an automated help desk system. It was released as open-source software
under the OSL-3.0 license.

Its main features include the seamless email integration, notification management, email and in-
app notification, integrated with multiple platforms and customizable.

Figure 11: Screenshot of the Faveo Helpdesk GUI.

7.3.2 Handesk
Handesk90 is a modular self-hosted powerful ticketing system, it provides with multiple teams,
multiple users, easy and efficient reporting. It supports multi-language, email integration, in-app
notificacion and reporting. It has been released as an open-source solution under MIT license.

89 https://www.faveohelpdesk.com/ Last access June 2021

90 http://handesk.io/ Last access June 2021

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 63

Figure 12: Screenshot of the Handesk GUI.

7.3.3 Jira Service Desk
Jira Service Management91 is a collaborative IT service management (ITSM) solution that
enables to create multiple projects to track and handle customer support requests and
incidents. It comprises features to provide request management, incident management, change
management, asset management and knowledge management among others. It can be self-
hosted or cloud based and has a free plan for up to 3 agents. It also allows multiple integrations
through its REST API and open platform.

91 https://www.atlassian.com/software/jira/service-management Last access June 2021

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 64

Figure 13: Screenshot of the Jira Service Desk GUI.

7.3.4 Trudesk
Trudesk92 is a complete self-hosted open-source solution for a help desk built with Node.JS and
MongoDB. It has real-time tickets and updates, multiplatform design, live support chat, in-app
notification and email integration. Trudesk is licensed under the Apache License, Version 2.0.

92 https://trudesk.io/ Last access June 2021

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 65

Figure 14: Screenshot of the Trudesk GUI.

7.3.5 UVDesk
UVdesk93 is a free open-source helpdesk ticket system, released as open-source software
under MIT License. It is highly customizable and provides knowledge base, integration with
email and workflow capabilities.

93 https://www.uvdesk.com/en/opensource/ Last access June 2021

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 66

Figure 15: Screenshot of the UVDesk GUI.

7.3.6 Zoho Desk
Zoho Desk94 is a cloud-based help desk software that allows to provide context-driven support.
It provides comprehensive features and workflows for ticket management, assignment,
categorization, prioritization, escalation, and more. It also features a knowledge base for ticket
deflection through self-service, as well as easy-to-use dashboards to track quality metrics such
as customer satisfaction and overall team performance.

94 https://www.zoho.com/desk/ Last access June 2021

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 67

Figure 16: Screenshot of the Zoho Desk GUI.

7.3.7 Comparison
The characteristics of the tools for help desk presented in the previous sections are summarized
and compared in Table 6. All tools offer appropriate features for supporting the collection of
feedback from pilot sites, so the decision of the one to use will be mostly based on free
availability, and the easiness to integrate with the rest of DevOps tools. Further analysis and the
final choice will be done in T3.4 and reported in the corresponding deliverables.

Table 6: Comparison of Help Desk tools.

 Faveo
Helpdesk

Handesk Jira
Service
Desk

Trudesk UVdesk Zoho Desk

License OSL 3.0 MIT Proprietary Apache 2.0 MIT Proprietary

Ease of Use

& set up +++ +++ ++ ++++ +++ ++

Built-in features +++ ++++ ++++ ++++ ++++ ++++

Integration +++ +++ ++++ +++ +++ ++++

Hosting
Self-host /
SaaS

Self-host /
SaaS

SaaS
Self-host /
SaaS

Self-host /
SaaS

SaaS

Security +++ +++ +++ +++ +++ ++

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 68

7.4 ODIN guidelines
In ODIN, we will use Portainer, to manage the deployed services. Portainer will be available
through the following URL:

https://portainer.odin-smarthospitals.eu

Portainer will be used to deploy applications, monitor their operation, view logs, start/stop
services, etc. Access to the deployment managers of the pilot sites will be provided as soon as
Portainer is installed in the pilot sites. Prior to that, Portainer will be available to test deployments
�G�H�S�O�R�\�H�G���L�Q���2�'�,�1�p�V���W�H�V�W�L�Q�J���L�Q�I�U�D�V�W�U�X�F�W�X�U�H�����V�H�H���6�H�F�W�L�R�Q��4.3).

Module developers should always document possible monitoring metrics of their modules.
Whether these are front end reports, API endpoints, if they are actively reported, if they need
further compilation from other sources (e.g. extraction from logs) or through any other
mechanisms. Developers should also provide threshold information about these metrics, e.g. if
metric X gets above/below Y then do Z; including failure hypothesis, possible corrective actions
and tests.

Module developers should ensure all logs are reported to the standard output of the container,
this way they can automatically be collected by the platform and centralized for further
processing.

Feedback from the operation of the deployed components will be collected from the pilot sites
using a reporting and ticketing system such as the ones presented in Section 7.3. The exact
tool to use and the guidelines for feedback reporting will be decided through the activities of
T3.4 and will be provided to the developers through deliverables D3.7-�'���������qTechnical Support
Plan and Operations�r��

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 69

8 Pipeline orchestration
Sections 2 to 7 described the individual steps needed to establish a continuous workflow from
the developer on one end to the end-user (pilot site) on the other end. The specific tools
presented provide mechanisms to facilitate the fulfilment of each step. The final piece is to
orchestrate the whole pipeline in a (semi-)automatic manner. This allows a change in the source
code, e.g., a bug fix or a new functionality, to be automatically propagated all the way down to
the end-user. This section describes the tools that will be used to automate the execution of the
whole DevOps pipeline in ODIN.

8.1 Tools for CI/CD
This section describes some of the most used available tools for pipeline automation.

8.1.1 Jenkins
Jenkins95 is an open-source automation server that is used to automatically build and deploy
projects. Jenkins is used to define a pipeline of steps to be taken in order to build, test and
deliver a software component, and can execute it automatically when a new version of the
software is available in the source code versioning system used. In this way, it offers continuous
delivery of software.

The definition of a pipeline is provided by the developer in a textual form, in a file named
Jenkinsfile . The Jenkinsfile uses a user-friendly domain-specific language (DSL) to
describe all the steps needed to perform the continuous delivery pipeline. The fact that the
pipeline description is provided as a text file allows it to be committed to source code versioning
tools along with the source code of the application, making it easy to maintain, update and use
by developers.

The top-level concept of a Jenkinsfile is the Pipeline , which contains the description of a
complete DevOps pipeline. A Pipeline consists of the following main parts:

�x Node: A node is a machine on which the pipeline, or a part of it, will be executed.
Jenkins supports several types of nodes, such as physical machines, virtual machines,
Docker containers, Kubernetes nodes, etc.

�x Stage: A stage is a conceptually distinct part of the pipeline, containing a set of steps to
perform a particular sub-goal of the whole pipeline. A stage may represent e.g. the
building phase, the testing phase, the deployment phase, etc.

�x Step: A step is the basic element of a pipeline, representing a single task to perform. A
step may e.g. run a shell command to build the source code, or call a testing framework

95 Jenkins, https://www.jenkins.io/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 70

to test the built software. Jenkins provides a set of core types of steps, which is further
extended with plugins to support a wide variety of available build/test/deployment
frameworks.

An example Jenkinsfile can be seen below96.

 pipeline {
 agent any
 stages {
 stage ('Build') {
 steps {
 sh 'make'
 }
 }
 stage ('Test'){
 steps {
 sh 'make check'
 junit 'reports/**/*.xml'
 }
 }
 stage ('Deploy') {
 steps {
 sh 'make publish'
 }
 }
 }
 }

The pipeline description contains two sections: the agent definition, which specifies which node
the pipeline will run on (here any existing node), and the stages description. There are three
stages defined:

�x �7�K�H�� �q�%�X�L�O�G�r�� �V�W�D�J�H���� �7�K�H�U�H�� �L�V�� �R�Q�O�\�� �R�Q�H�� �V�W�H�S�� �L�Q�� �W�K�L�V�� �V�W�D�J�H�� �Z�K�L�F�K�� �U�X�Q�V�� �W�K�H�� �q�P�D�N�H�r�� �V�K�H�O�O��
command to build the source code.

�x �7�K�H�� �q�7�H�V�W�r�� �V�W�D�J�H���� �7�K�H�U�H�� �D�U�H�� �W�Z�R�� �V�W�H�S�V�� �L�Q�� �W�K�L�V�� �V�Wage, one to run a shell command and
another to call the JUnit testing framework, in order to test the built software.

96 Example modified from https://www.jenkins.io/doc/book/pipeline/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 71

�x �7�K�H�� �q�'�H�S�O�R�\�r�� �V�W�D�J�H���� �7�K�H�U�H�� �L�V�� �R�Q�H�� �V�W�H�S�� �L�Q�� �W�K�L�V�� �V�W�D�J�H�� �W�R�� �S�X�E�O�L�V�K�� �W�K�H�� �E�X�L�O�W�� �D�Q�G�� �W�H�V�W�H�G��
software at an appropriate location.

There is a rich set of configuration options and step plugins at the disposal of the developer,
allowing them to define a wide variety of workflows. The reader may find online relevant
reference for the Jenkinsfile syntax and the available options and steps97,98.

8.1.2 CircleCI
CircleCI99 is a popular CI/CD tool that facilitates automation of a complete CI/CD pipeline.
Similar to Jenkins, the definition of a workflow is specified in a textual file, commonly named
config.yml , which can be subject to version control along with the source code.

CircleCI is directly integrated with Docker to provide isolated execution environments for the
CI/CD steps. In contrast to Jenkins, in which the functionality of the steps is provided by plugins,
CircleCI provides building and testing functionalities as part of its core, resulting in a more
�X�Q�L�I�L�H�G���H�Q�Y�L�U�R�Q�P�H�Q�W�����0�R�U�H�R�Y�H�U���� �&�L�U�F�O�H�&�,�� �S�U�R�Y�L�G�H�V���W�K�H�� �V�R���F�D�O�O�H�G���q�R�U�E�V�r�����Z�K�L�F�K���D�U�H���U�H�X�V�D�E�O�H���D�Q�G��
sharable packages of configuration options for common steps and projects, e.g. for installing a
Node.js server or pushing images to cloud services. CircleCI also directly integrates with
Bitbucket, GitHub, and GitHub Enterprise. To use the full functionalities of CircleCI, users need
to pay a corresponding fee.

CircleCI uses a YAML format for the description of the CI/CD workflows. An example
config.yml file is the following100.

97 Jenkins pipeline syntax, https://www.jenkins.io/doc/book/pipeline/syntax/ Last access June 2021.

98 Jenkins pipeline steps, https://www.jenkins.io/doc/pipeline/steps/ Last access June 2021.

99 CircleCI, https://circleci.com/ Last access June 2021.

100 Example modified from https://circleci.com/docs/2.0/sample-config/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 72

 version : 2.1

 # Define the jobs we want to run for this project
 jobs :
 build :
 docker :
 - image: circleci/<language>:<version TAG>
 auth :
 username: mydockerhub -user
 password : $DOCKERHUB_PASSWORD
 steps :
 - checkout
 - run : echo "this is the build job"
 test :
 docker :
 - image: circleci/<language>:<version TAG>
 auth :
 username: mydockerhub -user
 password : $DOCKERHUB_PASSWORD
 steps :
 - checkout
 - run : echo "this is the test job"

 # Orchestrate our job run sequence
 workflows :
 build_and_test :
 jobs :
 - build
 - test

�7�K�H�� �I�L�O�H�� �I�L�U�V�W�� �G�H�I�L�Q�H�V�� �W�K�H�� �W�\�S�H�V�� �R�I�� �M�R�E�V�� �W�K�D�W�� �Z�L�O�O�� �E�H�� �U�X�Q�� �L�Q�� �W�K�H�� �S�L�S�H�O�L�Q�H���� �K�H�U�H�� �W�K�H�� �q�E�X�L�O�G�r�� �D�Q�G�� �W�K�H��
�q�W�H�V�W�r���M�R�E�V�����D�Q�G���K�R�Z���H�D�F�K���L�V���H�[�H�F�X�W�H�G�����G�H�V�F�U�L�E�L�Q�J���W�K�H���'�R�F�N�H�U���F�R�Q�W�D�L�Q�H�U�V���D�Q�G���W�K�H���V�W�H�S�V���W�R���U�X�Q����
Then, the file defines the workflow, i.e. the order in which the jobs should be performed, here
�I�L�U�V�W���W�K�H���q�E�X�L�O�G�r���M�R�E���D�Q�G���W�K�H�Q���W�K�H���q�W�H�V�W�r���M�R�E��

8.1.3 TeamCity
TeamCity101 is a comprehensive solution for CI/CD that allows the specification and
management of a CI/CD pipeline through a graphical interface. It integrates with popular
building tools such as Maven, NPM and Gradle (see Section 3.1) and facilitates the

101 TeamCity, https://www.jetbrains.com/teamcity/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 73

management of build and testing steps through the GUI. It provides analysis of failures and
visualizations of pipelines that make it easier for the developer to specify and monitor the
pipeline. In addition to the visual interface, TeamCity allows the specification of the CI/CD
pipeline as a script using the Kotlin language. A screenshot of the TeamCity tool is shown in
Figure 17.

Figure 17: Screenshot of the TeamCity CI/CD tool.

8.1.4 Bamboo
Bamboo102 is a CI/CD GUI for constructing build and testing pipelines. It supports multi-stage
build plans, which can be executed upon source code commit, through the setup of appropriate
triggers, as well as automated test runs. A screenshot of Bamboo is shown in Figure 18.

102 Bamboo, https://www.atlassian.com/software/bamboo Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 74

Figure 18: Screenshot of the Bamboo CI/CD tool.

8.1.5 GitLab
GitLab, the Git-based source code versioning tool, provides its own CI/CD mechanisms103 that
can be employed by developers to setup pipelines to run upon source code commit and push.
GitLab pipelines are written in a YAML and can support multiple types of pipelines, such as
directed acyclic graphs and parent-child pipelines. Pipelines support building, testing and
production stages. GitLab also supports Auto DevOps104, which automatically creates CI/CD
pipelines by analysing the source code of the repository and creating appropriate build rules. An
example GitLab YAML file can be seen below.

103 Gitlab CI/CD, https://docs.gitlab.com/ee/ci/ Last access June 2021.

104 GitLab Auto DevOps, https://docs.gitlab.com/ee/topics/autodevops/index.html Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 75

 stages :
 - build
 - test
 - deploy

 image: alpine

 build_a :
 stage : build
 script :
 - echo "This job builds something."

 test_a :
 stage : test
 needs: [build_a]
 script :
 - echo "This job tests something."

 deploy_a :
 stage : deploy
 needs: [test_a]
 script :
 - echo "This job deploys something."

8.1.6 Comparison
The characteristics of the CI/CD pipeline orchestration tools presented in the previous sections
are summarized and compared in Table 7. In ODIN, Jenkins has been selected as the CI/CD
tool. Although the built-in set of its features is limited, it provides extensive functionalities
through a wealth of available plugins. Furthermore, it allows the specification of the pipeline as a
script that can be submitted to version control. Jenkins is supported by a wide community and is
quite familiar to the technical members of the consortium, which are also reasons for its
selection.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 76

Table 7: Comparison of CI/CD pipeline orchestration tools.

 Jenkins CircleCi TeamCity Bamboo GitLab

Open source Yes No No No No

Ease of Use

& set up Medium Medium Medium Medium Medium

Built-in features 3/5 4/5 4/5 4/5 4/5

Integration Very Good Medium Good Medium Good

Hosting
On premise &
Cloud

On premise
& Cloud

On premise
On premise &
Bitbucker as
Cloud

On premise
& Cloud

Free Version Yes Yes Yes Yes Yes

8.2 ODIN guidelines
In ODIN, we will use Jenkins for CI/CD automation. A Jenkins pipeline will ideally consist of the
following stages:

�x Building, using build automation tools such as the ones described in Section 3.1;

�x Testing, specifying both unit and integration tests, where applicable, as described in
Section 4;

�x Containerization, running the appropriate Docker commands to build component
images, according the provided Dockerfiles, as described in Section 3.2;

�x �5�H�O�H�D�V�L�Q�J���F�R�P�S�R�Q�H�Q�W�V���W�R���2�'�,�1�p�V���'�R�F�N�H�U���U�H�J�L�V�W�U�\�����D�V���G�H�V�F�U�L�E�H�G���L�Q���6�H�F�W�L�R�Q��5.4;

�x Deploying applications to the pilot sites, according to the specification of the available
docker-compose.yml files, as described in Section 6.3;

The Jenkins pipeline will be triggered upon pushing a new version of the source code of a
�F�R�P�S�R�Q�H�Q�W�� �W�R�� �2�'�,�1�p�V�� �V�R�X�U�F�H�� �F�R�G�H�� �*�L�W�/�D�E�� �U�H�S�R�V�L�W�R�U�L�H�V�� In case of pipeline failure, the
developers and the DevOps team will be notified in order to proceed to the appropriate actions.

The specification of the CI/CD pipeline for a particular application of ODIN will be written in a
�-�H�Q�N�L�Q�V�I�L�O�H���� �Z�K�L�F�K�� �Z�L�O�O�� �E�H�� �V�X�E�P�L�W�W�H�G�� �W�R�� �2�'�,�1�p�V��GitLab for version control. The writing and
management of the Jenkinsfiles of all ODIN services will be under the responsibility of the
DevOps team. The DevOps team, in coordination with component developers and pilot site
�G�H�S�O�R�\�P�H�Q�W�� �D�G�P�L�Q�L�V�W�U�D�W�R�U�V���� �Z�L�O�O�� �F�R�P�S�R�V�H�� �W�K�H�� �-�H�Q�N�L�Q�V�I�L�O�H�� �S�L�S�H�O�L�Q�H�V�� �D�Q�G�� �V�X�E�P�L�W�� �W�K�H�P���W�R�� �2�'�,�1�p�V��
GitLab. A separate repository will be devoted for the Jenkinsfiles, which will be managed by the
DevOps team.

The available Jenkins files will also be managed through the Jenkins server. Access to this
server will be provided to the DevOps team, as well as to development teams, as needed.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 77

9 Horizontal services
This section covers services that span the whole DevOps infrastructure horizontally. These
include the security infrastructure for DevOps, component documentation, the DevOps home
page providing access to all services, and the approaches to ensure high quality throughout the
DevOps pipeline.

9.1 Security mechanisms for DevOps
This section describes the security mechanisms used to ensure that the DevOps infrastructure
of ODIN is used only by authorized users within the consortium. The DevOps infrastructure is
different from the ODIN Platform (which will be better analysed in much more depth in D3.4),
being restricted to project members and community that will be working on the development of
the different aspects of the ODIN technology.

As such, the security mechanisms need only to protect the development process and its results.
This means ensuring only trusted entities can view (download, read), update (modify, write) or
execute the following assets produced by ODIN:

�x Source code, especially critical code-base

�x Binaries, including libraries and images

�x Pipeline configuration, execution, logs, and results

�x Documentation, particularly sensitive specifications and reports

�x Support and tickets

�x Testing infrastructure

�x DevOps infrastructures and secrets (e.g. access keys to other services)

The access to these assets must be restricted, at least during the run of the project. As such,
each of these assets must be configured with access control mechanisms, only authorising
trusted entities to them. These entities must be authenticated so they can claim their trusted
status.

All these assets also need to be verifiable, i.e. trusted entities should be able to trust that the
integrity of these assets has not been compromised by possible third parties, in an attempt to
disrupt or gain access to the development process.

Finally access to all these assets must be confidential. All communications between the trusted
entities and the asset repositories or infrastructure must be encrypted, so as not to disclose
critical aspects of the development or its process. Of course, once the trusted entity has access

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 78

to these assets, they are trusted not to share, inadvertently or otherwise, these assets with
other non-trusted (or even trusted) entities; and inform if they do.

9.1.1 Single Sign On and Authorisation service: Keycloak
Keycloak105 is an open source tool which manages cloud authentication and authorisation.
Centralized authentication means that all trusted entities can be registered in a single point,
offered as Single Sign-On (SSO), to access the different services, without the risk of confusing
entities or human error. Keycloak is also capable of loading its user base from different systems,
effectively federating user identity, even though common identity providers such as Google,
Facebook, GitHub, or Twitter.

All DevOps infrastructure services can connect with Keycloak authentication using OpenID
connect, SAML 2.0 or OAuth 2.0; all very common authentication and authorisation
mechanisms. Keycloak manages roles for all users, so that the services can enforce these roles,
but Keycloak can go beyond role-based access control and also implement complex access
control policies.

9.1.2 Public Key Infrastructure: SKS keyserver & Docker notary server
Anyone can create a private-public key pair, however trust must be built and the public key
disseminated in order for the encryption to be effective, or signature to be validated. To aid in
this, a Public Key Infrastructure (PKI) needs to be implemented, which will take care of
distributing public keys as well as maintaining the trust chain in these keys. OpenPGP (RFC
4880) is a de facto standard for email encryption and signing; this is why it is also used for
digital signing of Git commits106 as well as for signing packages for building automation tools.
For OpenPGP, the standard PKI is built upon a web of servers known as keyservers, which are
queried for exchanging keys. The most common keyserver is SKS107, but there are alternatives
such as Skier108. In both cases, a web interface is used to upload public keys, which can be
restricted to trusted entities (using access control provided by Keycloak).

As with any type of content, Docker images may be transmitted securely through Transport
Later Security (TLS), however this does not guarantee that the content itself has not been
tampered with. Docker Content Trust uses a public-private key schema to allow the signing and
verification of Docker images109. However, the last update (as of June 2021) of Docker Content

105 Keycloak, https://www.keycloak.org/ Last access June 2021.

106 Git signing tools, https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work Last access June 2021.

107 SKS Keyserver, https://github.com/SKS-Keyserver/sks-keyserver Last access June 2021.

108 Skier, https://github.com/SkierPGP/Skier Last access June 2021.

109 Docker trust, https://docs.docker.com/engine/security/trust/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 79

Trust was the 10th of April of 2018, rendering it insecure. There are two alternatives: Skopeo110
which could be used to sign Docker images with OpenPGP keys, and CodeNotary111 which has
its own system for signing Docker images. At the moment none of the two are definitive.

9.1.3 Transport Layer Security: X509 certification
All DevOps infrastructure services are accessed through HTTP, which can be protected
through Transport Later Security (TLS) or commonly known as HTTPS. In order to achieve so,
x509 certificates have to be installed and configured so that the HTTPS server presents them to
the client browser. However, the client will not trust this connection unless the certificate is
signed by any of a trusted set of Certificate Authorities (CA), or unless a chain of trust (other CA
whose certificate are signed by CA) with these trusted CA can be verified. Thus, it is imperative
that the installed certificate is verifiable this way.

Fortunately initiatives such as Let�ps encrypt112, provide a free and secure service through the
use of the ACME protocol. Most of the tools used for DevOps already implement the ACME
protocol to obtain a valid x509 certificate. If not, the Certbot tool113 can be used (and
automated) to obtain valid certificates.

9.1.4 ODIN guidelines
A Keycloak instance will be deployed in the DevOps infrastructure, allowing users to manage
their credentials, and other tools to interoperate with it in the following URL:

https://account.odin-smarthospitals.eu

A SKS keyserver will be deployed, allowing only valid Keycloak users to upload OpenPGP keys
(query and download of keys will be public) in the following URL:

https://sks.odin-smarthospitals.eu

The ODIN DevOps security infrastructure will include at least the user roles of Table 8. An
individual user may have more than one role. Depending on the user role, the DevOps home
page (see Section 9.3) will be adapted to offer links to the accessible servers.

110 Skopeo, https://github.com/containers/skopeo Last access June 2021.

111 CodeNotary, https://www.codenotary.com/ Last access June 2021.

112 Letsencrypt, https://letsencrypt.org/ Last access June 2021.

113 Certbot, https://certbot.eff.org/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 80

Table 8: ODIN DevOps user roles.

Role Accessible DevOps infrastructure

DevOps manager All

Developer Gitlab, Docker registry

Tester Docker registry, Portainer, Docker swarm, Kubernetes, testing infrastructure,
operation monitoring, ticketing

Deployer Portainer, Docker swarm, Kubernetes, operation monitoring, ticketing

Pipeline manager Jenkins

Security administrator Keycloak, SKS

Third-party (e.g. open
caller)

GitLab, Docker registry, Portainer, Docker swarm, Kubernetes, operation
monitoring, ticketing

All DevOps services (see 0) will be encrypted using valid x509 certificates. Trusted entities
(developers, pipelines, partners, etc.) will be encouraged to follow common sense security
policies:

�x Credentials, certificates, and keypairs are personal and untransferable.

�x Sensitive information should never be shared with third parties.

�x Sensitive information should never be published (in online comments, commits,
pipelines, Docker images nor any other kind of content unless it is properly secured).

A breach of these conditions should immediately be reported to ODIN DevOps manager via a
ticketing system in order to properly mitigate the security risks.

In order to maintain integrity, all Git tags should be signed by any member registered in the SKS
keyserver. The signature will cover the tag content as well as all other previous commits.
Signatories are encouraged to verify and validate all, especially the security considerations.

Integrity should also be maintained for binaries and Docker images. The Integration Manager
will verify that all stable releases, including Git tags, Docker images and any other persistent
content, are appropriately signed before releasing.

9.2 Documentation
Documentation of the developed components, systems and their interactions is important to
facilitate the use of components by other developers or by the same developer at later stages.
Component documentation runs in parallel to component development and deployment,
documenting the functionality of the components, and providing instructions for their installation
and use.

In ODIN, a knowledge base will be created to hold all documentation regarding the developed
components, in the form of a wiki that will be constantly be updated during the course of the
project as new components are made available or existing ones are updated. Part of this
documentation will be created as part of the source code itself, making use of per-language
documentation frameworks (see related guidelines in Section 2.4). The implementation of the
ODIN knowledge base and of the full set of guidelines regarding component documentation is

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 81

part of the activities of T3.4 and will be reported in more details in deliverables D3.7 �t D3.9
�qTechnical Support Plan and Operations�r�����,�Q���W�K�L�V���V�H�F�W�L�R�Q�����W�K�H�V�H���D�V�S�H�F�W�V���D�U�H���E�U�L�H�I�O�\���G�H�V�F�U�L�E�H�G���I�R�U��
completeness.

9.2.1 ODIN Knowledge Base
Knowledge management is an important aspect applicable to all stages of the DevOps cycle.
According to ITIL 4 �q�N�Q�R�Z�O�H�G�J�H�� �P�D�Q�D�J�H�P�H�Q�W�� �D�L�P�V�� �W�R�� �H�Q�V�X�U�H�� �W�K�D�W�� �V�W�D�N�H�K�R�O�G�H�U�V�� �J�H�W�� �W�K�H�� �U�L�J�K�W��
information, in the proper format, at the right level, and at the correct time, according to their
access level and other relevant policies. This requires a procedure for the acquisition of
knowledge, including the development, capturing, and harvesting of unstructured knowledge,
whether it is formal and documented or informal and �W�D�F�L�W���N�Q�R�Z�O�H�G�J�H�r114

This will be relevant to all type of stakeholders, from developers, to integrators, deployers and
pilot site members, as well as end-users, and in order to be successful, it needs to be
connected to their workflows, to enable a rich information architecture, and create consumable
documentation for all stakeholders.

Knowledge is one of the project most valuable assets and open knowledge sharing will help all
stakeholders to collaborate, create value and foster innovation around ODIN goals. In practical
terms, ODIN will define and collect all needed data and information and aggregate it in a single
self-serve online library wiki, available to all stakeholders through the DevOps landing page.

The information architecture and type of content for the knowledge base will be further define in
T3.4 and reported in the corresponding deliverables.

9.2.2 Component documentation
Documentation issues are as vital to the success of any project as the code itself115. In
particular, source code documentation has always been a topic that generated much debate
and opposing opinions. However, today there is a very strong current of opinion stating that it is
more important that developers follow good practices, coding standards, principles such as
"Clean Code" (use self-describing function / class names, that variables have names that are
readable and that we don't have to think too much to know what is happening), in short, that
they program in such a way that their code does not need to be commented. Sometimes the
necessary documentation is minimum and sometimes the unit tests themselves give them
enough information for another developer to understand the code snippet.

Within T3.4, a common strategy for documentation will be established in collaboration with the
develo�S�H�U�V�p���W�H�D�P�V���W�R���U�H�D�F�K���D�Q���D�J�U�H�H�P�H�Q�W���D�E�R�X�W���W�K�H���S�X�U�S�R�V�H���R�I���G�R�F�X�P�H�Q�W�L�Q�J���F�R�G�H�����W�R��make the
code readable by other programmers, to make the code usable, etc.). The goal will be to

114 ITIL 4 Foundation, 5.1.4, Knowledge management. Axelos. https://www.axelos.com/store/book/itil-foundation-itil-4-edition.

115 https://www.itpro.co.uk/606693/the-need-to-know-documentation-in-linux

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 82

establish a series of basic principles and then define the processes and finally the tools to use,
as different components may require different types of documentation (i.e. API documentation,
AI service documentation, etc.).

Although manual documentation will always be needed, there exist quite a number of tools that
enable automatizing part of the process. Tools like Swashbuckle116 or NSwag117 can generate
automatically Swagger documents based on the existing code. DocFx118 can generate API
and/or Markdown files based documentation, as well as GhostDoc119 can generate and validate
XML comments and create help files automatically.

9.3 DevOps home page
In order for the DevOps manager and the developers/deployers to handle all DevOps services,
�D�� �F�H�Q�W�U�D�O�L�]�H�G�� �'�H�Y�2�S�V�� �K�R�P�H�� �S�D�J�H�� �Z�L�O�O�� �E�H�� �X�V�H�G�� �D�V�� �D�� �q�O�D�Q�G�L�Q�J�� �S�D�J�H�r�� �S�U�R�Y�L�G�L�Q�J�� �D�F�F�H�V�V�� �W�R�� �D�O�O��
services. The purpose of this home page is to provide access to the different types of services
and to manage user authentication.

Landing pages can be implemented in an ad-hoc manner, as a separate component, providing
a higher layer above several other GUIs. However, there are existing tools that can provide such
functionality out-of-the-box. Organizr120 is such a tool. It can be used to organize multiple
services within the same screen, e.g., by putting them in different tabs or side-by-side.
Moreover, it can be used to provide user access to specific tabs, a feature that can be used to
design custom landing pages according to the type of user that logs in, providing different sets
of functionalities.

The ODIN DevOps homepage will be available at the following URL:

https://dev.odin-smarthospitals.eu

It will provide access to the following DevOps services:

�x GitLab, for source code management, along with separate parts for deployment
configurations and Jenkins pipelines

�x Docker registry, for viewing and managing �2�'�,�1�p�V���'�R�F�N�H�U���U�H�J�L�V�W�U�\

�x Testing infrastructure, for testing the developed components

116 https://www.c-sharpcorner.com/article/swashbuckle-and-asp-net-core/

117 https://github.com/RicoSuter/NSwag

118 https://dotnet.github.io/docfx/

119 https://submain.com/ghostdoc/

120 Organizr, https://organizr.app/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 83

�x Portainer, with corresponding Docker swarm / Kubernetes servers, for deployment
monitoring

�x KPI collection tool, for viewing and analysing monitored KPIs

�x Feedback collection and ticketing tools, for collecting feedback from the pilot sites in the
form of bug reports and other documents.

�x Jenkins server, for DevOps pipeline construction and management

�x Keycloak server, for security management

�x ODIN knowledge base, for component and service documentation

Depending on the role of the authorized user (see Table 8), different subsets of the above
services will be available through the DevOps homepage. The exact URLs of the landing page
and all the sub-GUIs will be disseminated to the project partners once the corresponding tools
are up and running.

Apart from providing access to the above listed services, the DevOps home page will also
provide guidelines for the use of these services by developers, deployers and managers. For
each type of service, it will provide links to the corresponding guidelines, as reported in this
�G�H�O�L�Y�H�U�D�E�O�H�����Z�K�L�F�K���Z�L�O�O���E�H���D�Y�D�L�O�D�E�O�H���W�K�U�R�X�J�K���W�K�H���S�U�R�M�H�F�W�p�V���:�L�N�L��

A detailed list of all DevOps services that will be available through the DevOps homepage, with
links to the associated guidelines, can be found in 10.

9.4 DevOps quality assurance
DevOps is designed for a continuous monitoring of development, testing and deployment
activities. If these activities are carried out following best practices in standardization and well
known Git patterns, a high product quality can be assured.

In the case of standards, the ISO 9000 family121 defined a set of international standards on
quality management and quality assurance. They are not specific to any one industry and can
be applied to organizations of any size. Within ISO 9000, the ISO 9001122 standard sets out the
criteria for a quality management system and is the only standard in the family that can be
certified to (although this is not a requirement). It can be used by any organization, large or
small, regardless of its field of activity. In fact, there are over one million companies and
organizations in over 170 countries certified to ISO 9001.

121 ISO 9000 family standard, https://www.iso.org/iso-9001-quality-management.html Last access June 2021.

122 ISO 9001, https://www.iso.org/standard/62085.html Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 84

The structure of ISO 9001 is divided into ten sections. The first three are introductory, while the
last seven contain the requirements relating to the Quality Management System. Below is a
summary of the seven main sections:

�x Section 4: Context of the organization - This section talks about the requirements for
understanding the organization in order to implement a Quality Management System
(QMS). It includes the requirements for identifying internal and external problems,
identifying stakeholders and their expectations, defining the purpose of the QMS and
identifying the processes and how they interact.

�x Section 5: Leadership - The leadership requirements concern the need for top
management to be instrumental in the implementation of the QMS. Top Management
must demonstrate commitment to the QMS by ensuring customer attention, defining
and communicating the quality policy and assigning roles and responsibilities within the
organization.

�x Section 6: Planning - Top Management must also plan the ongoing operation of the
QMS. It is necessary to evaluate the risks and opportunities of the QMS within the
organization and the objectives for quality improvement and plans to achieve these
objectives must be identified.

�x Section 7: Support - The support section concerns the management of all resources
related to the QMS and illustrates the need to control all resources, including human
resources, buildings and infrastructures, work environment, monitoring resources and
organizational measurement and knowledge. The section also includes requirements
relating to the competence, awareness, communication and control of documented
information (the documents and records required for the processes).

�x Section 8: Operation - Operational requirements cover all aspects of planning and
creating the product or service. This section contains requirements related to planning,
reviewing product requirements, designing, auditing external suppliers, creating, and
distributing the product or service, and checking for non-compliant process results.

�x Section 9: Performance Evaluation - This section includes the requirements necessary
to ensure that you can monitor the proper functioning of your QMS. These requirements
include process monitoring and measurement, customer satisfaction assessment,
internal audits and management review of the QMS.

�x Section 10: Improvement - This last section includes the requirements necessary to
improve your QMS over time. This includes the need to assess process non-
conformities and the adoption of corrective actions related to processes.

These sections are based on a PDCA (Plan-Do-Check-Act) cycle, which uses these elements to
implement change within the organization's processes, in order to stimulate and maintain
improvements within the processes.

In ODIN, the DevOps guidelines presented in the corresponding sub-sections in all steps of the
DevOps workflow (Sections 2 to 9) are meant to be followed in order to ensure that a high level
of quality is achieved in the development, delivery and deployment of the ODIN components.
The guidelines are based on best practices in each corresponding area. Following these
guidelines will ensure that all ODIN partners have a common understanding and framework for
component development and sharing, thus facilitating the development procedure and
minimizing problems during component delivery and maintenance.

Certain parts of the DevOps workflow can be formalized enough that automatic tests can be
developed to check if the corresponding guidelines are followed. Such automatic tests will be

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 85

used whenever possible, to ensure high quality delivered products. In case that automatic tests
are not possible, manual checks or appropriate design principles will be used to ensure that the
guidelines are followed and to facilitate the production of high quality results.

A list of quality assurance objectives with respect to DevOps functionalities is presented in Table
9. These objectives cover mostly source code quality and functionality testing. For each
objective, a qualitative or quantitative target is specified, along with the automatic or manual
means to check if the target is achieved. Operation-time quality assurance will be also
monitored through the deployment and KPI monitoring tools of Section 7, but these are more
related to the achievement of functional and non-function requirements, to be evaluated within
the activities of WP7.

Table 9: Quality assurance objectives for DevOps.

Objective Target Means to check

Source code directory
structure

Structure should be as
described in Section 2.4.

Simple automatic tests can be implemented to
check if all necessary files (README.MD,
LICENCE.TXT, Dockerfile etc.) exist and are
properly named.

Source code quality Minimum bugs, code is
clearly written, stylistic
conventions followed.

Automatic static code analysis tools such as
SonarQube123 and linters, e.g. Pylint124.

Source code
documentation

All publicly exposed
functions and services
should be documented
(functionality, input,
output).

By design: Existing documentation
management frameworks will be used by the
developers to document the components (see
Sections 2.4 and 9.2.2).

Automatic tests will be implemented to check if
all released API is properly documented.

Code coverage by tests 80% code coverage125. Use of automatic code coverage tools, such as
Codecov126, Clover127, Cobertura128 and
Coverage.py129.

123 SonarQube, https://www.sonarqube.org/ Last access June 2021.

124 Pylint, https://www.pylint.org/ Last access June 2021.

125 It is generally advised that code coverage is not used as a strict target, but rather as an indication of points in the code that have
not been tested. It should not be responsible for allocating much effort in creating tests that are of little value, only to increase the
code coverage rate. See e.g. https://medium.com/@nicklee1/why-test-code-coverage-targets-are-a-bad-idea-1b9b8ef711ef (last
access June 2021).

126 Codecov, https://about.codecov.io/ Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 86

Timely delivery of
components

Components are
delivered according to
planned deadlines (in the
DoA) and bug

By design: Use of GitFlow130 branching scheme
for feature development and hotfixes (see
Section 2.2.3.1).

Component versioning Version numbers are
incremented properly
and no new features are
added to already
released versions.

By design: Use of semantic versioning (see
Section 5.4) will be used for component
versioning.

Unit/Integration test
success

100% success of unit
and integration tests.

Use of automatic and manual tests written by
developers and integrators and run either
automatically in DevOps pipelines or manually
by testers through test reporting platforms (see
Section 4.4).

Security Minimum source code
vulnerabilities.

Use of automatic code quality checking tools
such as SonarQube.

127 Atlassian Clover, https://www.atlassian.com/software/clover Last access June 2021.

128 Cobertura, http://cobertura.github.io/cobertura/ Last access June 2021.

129 Coverage.py, https://coverage.readthedocs.io/en/coverage-5.5/ Last access June 2021.

130 GitFlow, https://datasift.github.io/gitflow/IntroducingGitFlow.html Last access June 2021.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 87

10 Conclusion
In order to achieve continuous integration and continuous delivery for a large project such as
ODIN, several steps and tools need to be considered. This deliverable attempted to organize
and clarify the DevOps procedure, from source code management to deployment monitoring,
providing guidelines to the technical partners of ODIN. At each DevOps aspect, the available
tools were examined in order to select appropriate ones for the requirements of ODIN.

This deliverable is meant to be used as a reference point and guide for �2�'�,�1�p�V���W�H�F�K�Q�L�F�D�O���W�H�D�P����
�7�K�H���U�H�D�G�H�U���F�D�Q���F�R�Q�V�X�O�W���W�K�H���q�J�X�L�G�H�O�L�Q�H�V�r���V�H�F�W�L�R�Q�V���D�W���H�D�F�K���F�K�D�S�W�H�U, summarized in Appendix A, to
quickly find the recommended procedures to ensure high quality component delivery, moving to
other parts of the deliverable for more details, if needed.

�]he document and the guidelines are susceptible to changes as the project progresses, as the
requirements evolve and as components are being developed and deployed. For this reason,
and due to the lack of another version of this deliverable, the document will be transferred to the
projec�W�p�V�� �:�L�N�L���� �R�Q�F�H�� �W�K�H�� �O�D�W�W�H�U�� �L�V�� �U�H�O�H�D�V�H�G���� �L�Q�� �R�U�G�H�U�� �W�R�� �V�H�U�Y�H���D�V���D�� �O�L�Y�H�� �U�H�I�H�U�H�Q�F�H���J�X�L�G�H���� �X�S�G�D�W�H�G��
when needed.

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 88

Appendix A DevOps service list
The following table summarises �2�'�,�1�p�V��DevOps infrastructure. The table lists each step of the
DevOps workflow, including the URLs of the corresponding servers and links to the
corresponding guideline sections in the deliverable. The table can be used as a reference map
of the DevOps infrastructure, to guide developers and deployers throughout their involvement in
the ODIN project. This reference will be �L�Q�F�O�X�G�H�G�� �L�Q�� �W�K�H�� �S�U�R�M�H�F�W�p�V�� �:�L�N�L�� �D�V�� �D�� �U�X�Q�Q�L�Q�J�� �U�H�I�H�U�H�Q�F�H����
and will form the basis for the implementation of the DevOps home page.

Table 10: ODIN DevOps service list.

DevOps
functionality

Server URL Guidelines

Access to all
services

DevOps home
page

https://dev.odin-smarthospitals.eu Section 9.3

Source code
management

GitLab https://gitlab.odin-smarthospitals.eu Section 2.4

Building and
containerization

GitLab https://gitlab.odin-smarthospitals.eu Section 3.3

Testing Testing
infrastructure

To be decided during the course of the
project

Section 4.4

Software release Docker registry https://registry.odin-smarthospitals.eu Section 5.4

Deployment
management

Portainer /
Docker swarm /
Kubernetes

https://portainer.odin-smarthospitals.eu Section 6.3,
Section 7.4

KPI monitoring KPI monitoring
tool

To be decided during the course of the
project

Section 7.4

Feedback
collection and
ticketing

Ticketing server To be decided during the course of the
project

Section 7.4

CI/CD pipeline
orchestration

Jenkins server https://jenkins.odin-smarthospitals.eu Section 8.2

DevOps
authentication

Keycloak server https://account.odin-smarthospitals.eu Section 9.1.4

Public Key
Infrastructure

SKS keyserver https://sks.odin-smarthospitals.eu Section 9.1.4

Documentation ODIN knowledge
base (wiki)

To be decided during the course of the
project

Section 9.2.1

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 89

Appendix B Acronym glossary

Acronym Definition

AI Artificial Intelligence

CI/CD Continuous Integration / Continuous Delivery

DDOS Distributed Denial-Of-Service

DevOps Development Operations

ECS Amazon Elastic Container Service

GUI Graphical User Interface

ICREA Catalan Institution for Research and Advanced Studies

IDE Integrated Development Environment

IPR Intellectual Property Rights

ISO International Organization for Standardization

IT Information Technology

ITIL Information Technology Infrastructure Library

KPI Key Performance Indicator

MPOE Minimum Point of Entry

MS Milestone

MW Mega-watts

NOC Network Operations Centre

ROS Robot Operating System

SCM Source Code Management

SOC Security Operations Centre

SSAE Statement on Standards for Attestation Engagements

SVN Apache Subversion

TI Technical Infrastructure

UI User Interface

UPS Uninterruptible Power Supply

URL Uniform Resource Locator

Deliverable D3.1 �t Operational framework

Version 1.0 I 2021-06-30 I ODIN © 90

VESDA Very Early Smoke Detection Air

VCS Version Control System

WP Work Package

