

Deliverable No. D4.3 Due Date 28/02/2023

Description

D4.3. Second version presenting the final technologies for the

Resource Descriptors, the technologies for the Resource Gateway

and the measurement collection software components.

Type Report
Dissemination

Level
PU

Work Package No. WP4
Work Package

Title

CPS-IoT Resource Management

System

Version 1.0 Status Final

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement Nº 101017331

D4.3 Implementation of Local CPS-IoT RSM

Features v2

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 2

Authors

Name and surname Partner name e-mail

Sofia Granda INETUM sofia.granda@inetum.com

Antonio Gamito INETUM antonio-jesus.gamito@inetum.com

Luis Carrascal INETUM luis.carrascal@inetum.com

Alejandro Barnadas INETUM alex.barnadas@inetum.com

Pablo Lombillo MYS plombillo@mysphera.com

Eugenio Gaeta UPM eugenio.gaeta@lst.tfo.upm.es

Alejandro Medrano UPM amedrano@lst.tfo.upm.es

History

Key data

Keywords
IoT, resources, robot, gateway, integration, platform, layer, API,

messaging, web service, architecture, components

Lead Editor Sofia Granda (INETUM)

Internal Reviewer(s) PEN, UMCU

Date Version Change

27/07/2022 0.1 Initial ToC

07/11/2022 0.2 Final ToC

19/12/2022 0.3 First Draft

09/01/2023 0.4 First Draft review

16/01/2023 0.5 Final version first draft

31/01/2023 0.6 Peer review document

15/02/2023 0.8 Completed version

20/02/2023 0.9 Version after peer-review

24/02/2023 1.0 Version ready for submission

mailto:eugenio.gaeta@lst

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 3

Abstract
Deliverable D4.3 “Implementation of Local CPS-IoT RSM Features v2” is the second iteration of

deliverable D4.2 with the same name. It describes the fundamental features of the CPS-IoT

Resource Management System, the ODIN platform layer that supports the interconnection of

available resources more in depth. The Resource Manager, and within it the Resource Descriptor

is the key component that defines and manages the data collection infrastructure. Along with the

Resource Directory that acts has storage point. The Resource Gateway manages communication

to the ODIN upper layers. The Measurement Collection Software Components are used to

register and collect performance indicators. In this second version, we will select the technologies

to apply for each component and how to implement them.

Statement of originality
This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made

through appropriate citation, quotation or both.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 4

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 5

Table of contents
TABLE OF CONTENTS .. 5

LIST OF TABLES ... 7

LIST OF FIGURES .. 8

1 INTRODUCTION ... 9

1.1 DELIVERABLE CONTEXT .. 9

1.2 PLATFORM ARCHITECTURE REVIEW ... 11

2 RESOURCE MANAGEMENT .. 12

2.1 RESOURCE MANAGER .. 12

2.2 RESOURCE DESCRIPTOR... 12

2.2.1 Introduction .. 12

2.2.2 Resource Descriptor in D4.2 ... 13

2.2.3 Selected Technologies .. 14

2.2.4 Integration of the Selected Technologies ... 25

2.3 RESOURCE DIRECTORY .. 28

2.4 POSSIBLE LIMITATIONS ... 29

3 RESOURCE GATEWAY .. 30

3.1 INTRODUCTION.. 30

3.1.1 Resource Gateway v1 ... 30

3.2 SELECTED TECHNOLOGY FOR MESSAGING BUS ... 30

3.2.1 Kafka .. 31

3.3 TECHNOLOGIES FOR THE API GATEWAY .. 38

3.3.1 API Gateway functionality .. 38

3.3.2 KrakenD ... 39

3.3.3 TYK .. 41

3.3.4 Istio .. 44

3.3.5 API Gateway solution comparison ... 47

3.3.6 API Gateway final approach .. 49

3.3.7 Limitations of Tyk .. 49

3.4 TRANSPORT SERVICES ... 49

3.4.1 Implementation ... 50

3.5 POSSIBLE LIMITATIONS ... 53

3.6 TECHNOLOGIES FOR THE HISTORY COMPONENT... 54

3.6.1 Kafka .. 54

3.6.2 SQL Database .. 55

3.6.3 No-SQL Database .. 55

3.6.4 Status ... 55

4 MEASUREMENT COLLECTION SYSTEM .. 56

4.1 INTRODUCTION.. 56

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 6

4.1.1 Measurement collection system v1 .. 56

4.1.2 Final approach .. 57

4.2 SELECTED TECHNOLOGY .. 59

4.2.1 Features Implemented .. 60

4.3 POSSIBLE LIMITATIONS ... 60

5 INTEGRATION PROTOCOLS FOR LOCAL ODIN INSTANCES 61

5.1 IMPLEMENTATION .. 61

6 CONCLUSIONS AND NEXT STEPS .. 62

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 7

List of tables
TABLE 1. DELIVERABLE CONTEXT .. 9

TABLE 2: COMPARISON BETWEEN WEB OF THINGS, OPENAPI AND ASYNCAPI 18

TABLE 3: CORE TOPICS ... 33

TABLE 4: PLATFORM TOPICS .. 36

TABLE 5: API GATEWAY TECHNOLOGIES COMPARISON .. 47

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 8

List of figures
FIGURE 1: ODIN PLATFORM ARCHITECTURE .. 11

FIGURE 2: RESOURCE MANAGER IN THE ODIN PLATFORM ARCHITECTURE DETAIL 12

FIGURE 3: OPENAPI VS ASYNCAPI STRUCTURE .. 16

FIGURE 4: ASYNCAPI EXAMPLE .. 17

FIGURE 5: ASYNCAPI EXAMPLE FOR RTLS MYS ... 20

FIGURE 6: DOCUMENTATION FROM RTLS ASYNCAPI EXMPLE ... 21

FIGURE 7: WEB OF THINGS EXAMPLE FOR TRANSPARENT ROBOT TEMPERATURE SENSOR 22

FIGURE 8: OPENAPI DESCRIPTION .. 23

FIGURE 9: HAPI FHIR MAIN PAGE ... 25

FIGURE 10: HAPI FHIR OBSERVATIONS ... 25

FIGURE 11: NIFI LOGIN PAGE ... 27

FIGURE 12: NIFI FLOWS CANVAS ... 27

FIGURE 13: STRIMZI ARCHITECTURE .. 32

FIGURE 14: KAFKA STRIMZI PODS ... 38

FIGURE 15: KAFKA STRIMZI SERVICE .. 38

FIGURE 16: KRAKEND CONCEPTUAL MICROSERVICE ARCHITECTURE .. 39

FIGURE 17: MERGING SERVICES ... 39

FIGURE 18: KRAKEND SECURITY MECHANISM ... 40

FIGURE 19: OPENID CONNECT AUTHENTICATION FLOW ... 42

FIGURE 20: TYK PUMP COMPONENT EXTRACTING DATA TO A STORE .. 43

FIGURE 21: TYK OPERATOR FOR KUBERNETES .. 43

FIGURE 22: ISTIO CONCEPT.. 44

FIGURE 23: ISTIO SECURITY CONCEPTS .. 45

FIGURE 24: ISTIO SECURITY ARCHITECTURE .. 46

FIGURE 25: CONNECTOR ARCHITECTURE ... 50

FIGURE 26: POJO FOR RTLS POSITION MESSAGE .. 51

FIGURE 27: NIFI MQTT-KAFKA CONNECTOR .. 52

FIGURE 28: CAMEL VS NIFI CPU USER TIME .. 53

FIGURE 29: KPI SUBSYSTEM ARCHITECTURE ... 57

FIGURE 30: PROMETHEUS, ALERT MANAGER (A PROMETHEUS COMPONENT) AND GRAFANA STACK

(CREDIT MEDIUM.COM) ... 58

file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132435
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132436
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132437
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132438
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132439
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132440
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132441
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132442
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132443
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132445
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132446
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132447
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132448
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132449
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132456
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132457
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132458
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132460
file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4%20Resource%20management/Draft%20deliverables/D4.3%20Final%20version-v0.9.docx%23_Toc128132461

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 9

1 Introduction
The following deliverable is the second version of deliverable 4.2, which began by outlaying the

main features of the CPS-IoT Resource Management System and the possible technologies to

implement it. In this second version, we will review the proposals set out in D4.2 and select the

most appropriates for each element that was presented: the Resource Descriptor, the Resource

Gateway, and the Measurement Collection Software Components. We will also present the

possible integration schema of all the elements and evaluate the different alternatives to

implement it in the local ODIN instances.

1.1 Deliverable context

Table 1. Deliverable context

PROJECT ITEM IN THE DOA RELATIONSHIP

Project Objectives

The deliverable is relevant to ODIN’s Objective 1, as it describes

and defines the software architecture of the ODIN platform to

cover medical and technological requirements.

The WP4 objectives are:

• Specification of the CPS-IoT RMS requirements based on

input from WP2

• Specification of KPI and metrics collection framework

Exploitable results

The final definition of the software architecture components

implementation and their usage to tackle the ODIN platform’s

needs and goals. It will also give a interconnection model for all the

technologies used, to interact with each other and work as one to

the end user.

The docker images necessary to deploy the technologies used.

Workplan

D4.3 (M24) was preceded by D4.2 (M12) and will be followed by

D4.4 (M36). They belong to WP4 Task T4.2 CPS-IoT Resource

Descriptor Module lead by INETUM.

Milestones It is relevant for milestone MS2, that defines de technologies.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 10

Deliverables

• D3.3: Report on the Data model, ODIN semantic ontology,

datasets harmonization plan.

• D4.1: CPS-IoT Resource Management System

Specification.

• D4.2: Implementation of Local CPS – IoT RSM Features v1.

• D4.6: Implementation of Advanced CPS – IoT RSM

Features v2.

• D7.3: KPI Evolution Report

• D7.9: Pilot Studies Evaluation Results and Sustainability.

Risks

This deliverable tackles the following risks:

• Technical problems due to a poor previous analysis and

unsuitable technologies for the proposes that want to be

achieved.

• Delays in implementations and pilots

• Incompatibilities between technologies

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 11

1.2 Platform Architecture review
Figure 1 shows the ODIN platform architecture scheme. The components that will be explained

in the deliverable are highlighted with a red square. This way we can see their place within the

architecture.

Figure 1: ODIN Platform Architecture

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 12

2 Resource Management

2.1 Resource Manager
The Resource Manager (RM) is the hub for resource registration, querying and update1. At the

same time, it is the connection to the ODIN platform and the middle component between the

ontology and the Resource Directory. It will offer a set of services regarding resources, and their

management.

The main functionalities of the Resource Manager are:

- Ensuring that the resources been registered follow the structure defined by the Resource

Descriptor

- Ensuring that the information contained follows the ontology.

- Additionally, it is the focal point to consult about the available resources and extract the

information stored in the Directory.

2.2 Resource Descriptor

2.2.1 Introduction

The Resource Descriptor is the element that homogenises data description. It provides a common

scheme to describe everything that integrates the ODIN platform in terms of the supported data

types, formats, protocols, and structures. It describes how the data is organized (it will help to fed

T3.2 modelling the ontology for internal representation of the KERs in the system) and the

information that there is available. This way, we can have a structured digital directory to look for

the ODIN platform’s components1 available (KERs, AI algorithms, HIS…), the information they

1 D3.10 ODIN platform v1

Figure 2: Resource Manager in the ODIN platform architecture detail

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 13

provide and the mechanism necessary to interact with them, not only in terms of data collection,

but also to send back instructions and control them.

2.2.2 Resource Descriptor in D4.2

In the previous version of this deliverable2, we already presented the Resource Descriptor's

requirements to establish the information this component would handle. Those requirements

were:

• Semantic Resource Description

• Resource Services

• Resource Federation

• Resource Privacy, Security, and Trust

• Resource Metric Reporting

• Resource Health

• Resource UIs

• Resource Administration

• Resource Documentation

• Resource Deployment

• Resource Communication

We could see that it covers every aspect that integrates a technological solution, regardless if it

is software or a physical device, going from security to documentation.

Additionally in D4.2, three different solutions were analysed and compared:

1. Web of Things: a W3C initiative for IoT devices. It proposes to standardize device’s

description in a way that is understandable by machines. This would overcome integration

and interoperability problems between different systems.

2. OpenAPI: A standardized format for describing REST Application Programming Interfaces

(APIs), resources and services. It contains information regarding resources, endpoints,

operations, parameters, and authentication, to be able to make use of the described

services adequately.

3. FHIR: This standard is focus only on healthcare information and it defines how it can be

exchanged between different computer systems regardless of how it is stored.

2.2.2.1 Final Approach

From the analysis, it was shown that the proposed solutions are heterogenous and tackle different

types of needs and that the information they handle is different. That is why, the final approach is

to integrate all of them and end up with a Resource Descriptor were all technologies complement

each other. Depending on the component of the ODIN platform, we will make use of the

2 D4.2 Implementation of Local CPS-IoT RSM v1

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 14

technology that best suits its functionality and adapts to the information been stored. We could

even use more than one technology if necessary. In the end, we will be able to properly describe

all the elements of the ODIN platform in a structured manner without losing any information due

to standards constraints.

To sum up, the final solution will use the technology that bests suits the functionality of the element

been registered and its needs.

This concept aligns with the channels approach presented in D3.113. This approach is based on

event-based communication within the ESB. Were each KER opens a channel making use of

specific topics to publish and consume data. The Thing Descriptor of each KER will have to include

the information relative to that channel such as the data model and the topics used. Additionally,

there can be channels for peer-to-peer communication using http services. In this case the Thing

Descriptor would include the endpoints description based on the standards defined (OpenAPI,

WoT or FHIR). Finally, if there would be streaming channels, the URL of those should also be

included in the Thing Descriptor.

2.2.3 Selected Technologies

In the timeframe between the first version and the second version of this deliverable, another

possible technology for the Resource Descriptor (additionally to WoT, OpenAPI and FHIR) raised

up:

2.2.3.1 AsyncAPI

AsyncAPI4 is an open-source standard based on OpenAPI but focused on Event-Driven

Architectures (EDA) and, therefore, in message-based systems. Unlike OpenAPI, that is focused

on REST APIs. At the same time, one of the advantages is that both standards are fully compatible

with each other.

The main difference between these two systems is what their own names tell us. AsyncAPI is

made to describe asynchronous message systems, instead of the typical REST API where you

make a request and wait for a response from the server (like OpenAPI). It is made for systems

where a response is not expected, so called “fire and forget”. The devices send messages to the

server but do not expect any messages back. A good example of this could be a temperature

sensor. It just needs to report the temperature to the server so the server can analyse the data

and take the adequate measures, but the device does not need to receive any feedback from the

server to perform its activities.

The core concepts of AsyncAPI are:

• Message broker: It is the central point to which all messages arrive. It takes care of

receiving and delivering the messages. For example: Apache Kafka.

• Publisher/Subscriber: The application that publish or consume the messages that arrive

to the broker.

3 D3.11 ODIN platform v2

4 AsyncAPI, https://www.asyncapi.com/docs

https://www.asyncapi.com/docs

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 15

• Message: The piece of information been transmitted.

• Channels: The routes that the messages follow. Normally, brokers have different topics

that categorize the information arriving to the brokers. For example: we can have a

temperature topic to which arrives all temperature data and another called humidity to

which arrives all humidity data.

As mentioned before, AsyncAPI originates from OpenAPI and it adapts many of the structures to

the asynchronous world5. In the next image we can see the structure of both for better

comparison.

5 AsyncAPI vs OpenAPI, https://www.asyncapi.com/blog/openapi-vs-asyncapi-burning-questions

https://www.asyncapi.com/blog/openapi-vs-asyncapi-burning-questions

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 16

In the following image we can see a hello-goodbye message broker example. It shows how

information is organized following the standard and according to the core concepts we just

defined.

Figure 3: OpenAPI vs AsyncAPI structure

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 17

In Figure 46, above, we see:

a) General information regarding the AsynAPI’s version and the application’s name and

version. (Lines 1-4).

b) Server’s (broker) configuration. It specifies the address, the protocol (here it’s amqp but

other common options are mqtt, kafka, ws or http) and the security of it. (Lines 5-11).

6 https://www.asyncapi.com/docs/tutorials/getting-started/security

Figure 4: AsyncAPI Example

https://www.asyncapi.com/docs/tutorials/getting-started/security

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 18

c) The channels. The possible routes the messages can follow depending on their content.

(Lines 12-20).

d) At the same time, the channels are related to the components field (lines 16 and 20). That

defines the contents of the messages. We can see that both, hello and goodbye

messages, have the same data types, an Object for the main information and a String for

the date and time stamp. (Lines 21-44).

In this case the description language is YAML, but JSON is also supported.

COMPARISON BETWEEN WEB OF THINGS, OPENAPI AND ASYNCAPI

The following table was already present in D4.2 to compare WoT and OpenAPI, now we will

complete it with AsyncAPI to compare the three technologies.

Table 2: Comparison between Web of Things, OpenAPI and AsyncAPI

WOT OPENAPI ASYNCAPI

ADVANTAGES:

• WoT Thing Descriptor can

be enhanced with a

context field for

converting the JSON

format to JSON-LD.

• It can handle many

protocols such as CoAP,

MQTT, WebSocket.

• WoT description uses

events to represent state

transitions (simpler).

• WoT is specific for IoT

and it applies to any IoT

application domain, from

consumer electronics to

heavy industries

ADVANTAGES:

• Enriched with text that can

be understood by humans

providing both, human and

machine-readable

descriptions of Web

services.

• Defines services in a way

that eliminates ambiguities

and provides Web Thing

service descriptions which

are uniquely defined and

discoverable.

• Meets the HATEOAS

requirement of REST

architectural style.

• It is possible to convert an

OpenAPI description to an

ontology

• OpenAPI is supported by a

complete tool pallet (e.g.,

editors, description

validators and client SDK

generators)

ADVANTAGES:

• It supports many

protocols such as:

AQMP, Kafka, MQTT,

WebSockets…

• Great variety of tools to

edit, validate or develop

contents under this

standard.

• Easily understandable

by humans and small

learning curve to use it.

• For asynchronous

interactions. One to one

and one to many.

• OpenSource.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 19

DISADVANTAGES:

• Description is a much

shorter document.

• Ambiguities: The same

property may appear with

different names.

• Does not support

HATEOAS requirement of

REST architectural style.

DISADVANTAGES:

• Does not support JSON-LD.

• Only supports HTTP(S) and

webhooks.

• Subscription to property

changes is more complex.

• Simpler security scheme

than WoT.

DISADVANTAGES:

• Does not support JSON-

LD.

• Does not support

HATEOAS requirement

of REST architectural

style.

• Simpler security scheme

than WoT.

At this point, we can see that there are similarities between WoT and AsynAPI with respect to the

type of information handled and the problems they tackle. Still, their differences make

unnecessary to make a choice between them. One of the purposes of the ODIN platform is to be

able to integrate all kinds of elements that might be in the hospital and not been limited to one or

another standard to add new devices to the platform. Therefore, AsyncAPI will be included to the

technologies used by the Resource Descriptor along with WoT, OpenAPI and FHIR. This way,

several standards will be supported to describe the different resource that will interact with the

ODIN platform according to their functionalities, as it was explained in section 2.2.2.1.

The usage of AsyncAPI would be mainly for devices that send asynchronous messages and for

whom Web of Things is not suitable because they cannot be considered environment or

interactive sensors. Within the ODIN catalogue, we can find the RTLS (Real Time Location

System) from Mysphera that is under this scenario. In Figure 5, below, we provide with an example

of how the implementation of AsynAPI to describe this device would be used.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 20

The example above shows the specification for RTLS system publishing instant position of ODIN

assets and tracked people. The first section, “info”, describes the API. Then, there is the “servers”

section, that would define the kafka broker address to connect to. Afterwards, the “channels” that

indicate the topic where the messages will be published. And finally, the structure And content of

the messages.

Figure 5: AsyncAPI example for RTLS MYS

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 21

The tool available at studio.asyncapi.com also allows to edit the RTLS API definition and create

the documentation at once. In the following image the documentation generates from the RTLS

definition.

2.2.3.2 Web of Things

Web Of Things7 is intended to be used for IoT devices, especially sensors in smart homes to

enable control over lights, doors, alarms, humidity, etc. Some of these sensors can be also

7 WebThings, https://webthings.io/framework/

Figure 6: Documentation from RTLS AsyncAPI exmple

https://webthings.io/framework/

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 22

suitable for smart hospitals that, in the end, are a building just like houses. We can use them to

monitor and control different areas of the hospital of the future.

In the ODIN’s catalogue8 we can find one device that would be suitable to use this standard: the

Transparent Robot. It consists of a multi-sensor unit with satellite connection to connect

smartphones. We can use the Web of Things standard to describe the sensors it contains:

1. Temperature: It sends a float number with the temperature measured in degrees Celsius.

The possible values are between [(-40ºC) – 85ºC].

2. Humidity: It sends a float number with the percentage of humidity. The possible values are

between [0 – 100%].

3. Pressure: It sends a float number with the pressure in Pa. The possible values are between

[300 -–1100 hPa].

4. Dust: It sends a float number with the percentage of particulates matter in the

environment. The possible values are between: [0 – 2.8 x 10 ⁷ pcs/l] measuring up to 1μm

diameter of particles

5. Light: It sends a string describing the light brightness. The possible values are: Very Dark,

Dark, Light, Bright, Very Bright.

6. Noise: It sends a string describing the noise. The possible values are: Quiet, Noisy, Very

Noisy.

8 D2.3 ODIN Platform Catalogue

Figure 7: Web of Things example for Transparent Robot temperature sensor

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 23

7. Air Quality: It sends string describing the air quality. The possible values are Danger, Low

Pollution, High Pollution, Fresh Air.

8. Battery: It sends a float number with the device’s battery percentage. The possible values

are between [0-100%].

9. Time: Current date and time in date format.

2.2.3.3 OpenAPI

In D4.2 we show that OpenAPI9 is intended for REST applications. Therefore, the cases when this

standard will be used is to describe the interaction with devices that use HTTP/HTTPS requests.

It is expected that most telemedicine tools use this protocol along with FHIR to communicate with

the hospitals remotely and adding the health-related information to the EMR (Electronic Medical

Record).

2.2.3.4 FHIR

HL7 FHIR is a fully computable standard that combines the best features of HL7's v2, HL7 v3 and

Clinical Document Architecture (CDA) product lines while leveraging the latest web standards

9 Official OpenAPI site, https://swagger.io/docs/specification/basic-structure/

Figure 8: OpenAPI description

file:///C:/Users/sofia.granda/Documents/ODIN/WPs/WP4/Official%20OpenAPI%20site,%20https:/swagger.io/docs/specification/basic-structure/

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 24

and applying a tight focus on implementation. FHIR solutions are built from a set of modular

components called "Resources". FHIR is mainly designed for REST applications, but it can also

support document-based, messaging and services-based interoperability paradigms. FHIR

resources are typically accessed through HTTP-based REST APIs and can be represented with

XML, JSON, or RDF turtle. The RDF turtle representation will be likely superseded in the next

release by JSON-LD 1.1. The last published HL7 FHIR release is R4, including normative content.

FHIR is widely adopted at the global level, and it is supported by a large community of practice.

FHIR profiles and implementation guides play a relevant role in the adoption and usage of the

base standard, allowing for validation and increasing interoperability. They define, by means of

conformance resources, how FHIR should be used in specific contexts and scopes. They also

specify which terminologies (e.g. LOINC, SNOMED CT) to use and how.

FHIR is used to define the structure healthcare information can have to exchange it between

different computer systems. A full explanation about this standard was presented in D4.2.

It will be used to describe healthcare information in the ODIN platform. It is expected that the KER

that most uses this standard is the hospital’s Health Information System (HIS). A FHIR server10,11

would facilitate the interaction of the ODIN platform with the HIS.

This standard has already clearly defined the resources and the elements it describes, therefore

there is no need to write one by one all the descriptors. All the information with respect to the

resources can be found in the standard’s site12.

The standing role of HL7 FHIR for health, social and wellbeing-related data is nowadays globally

recognized. The adoption of HL7 FHIR in specific contexts of use, including ODIN, can be

optimized by profiling the HL7 FHIR standard for these scopes. This profiling activity is a

standardized process usually documented into FHIR implementation guides. These

implementation guides are purely computable specifications, that support the automatic

validation of the exchanged resources; the generation of human readable browsable guides for

implementers the pilots and enable the tracing from logical to implementable models if of interest.

A HL7 FHIR implementation guide will also provide auto-generated testing environment that are

built on top of the FHIR implementation guide.

10 FHIR server by IBM, https://www.ibm.com/blogs/watson-health/ibm-fhir-server-vs-hapi-jpa/

11 HAPI server, https://hapifhir.io/hapi-fhir/docs/introduction/table_of_contents.html

12 HL7 official site, https://hl7.org/fhir/resourcelist.html

https://www.ibm.com/blogs/watson-health/ibm-fhir-server-vs-hapi-jpa/
https://hapifhir.io/hapi-fhir/docs/introduction/table_of_contents.html
https://hl7.org/fhir/resourcelist.html

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 25

Figure 10: HAPI FHIR observations

2.2.4 Integration of the Selected Technologies

Once we have defined the technologies we will use, it is necessary to implement a tool that

integrates all of them and works as the Resource Descriptor manager. The requirements of this

tool are:

1. Interaction with a wide range of technologies such as servers, databases, etc.

Figure 9: HAPI FHIR main page

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 26

2. Analyse the incoming data, to check its contents.

3. Adapt the content depending on the functionality described and use the chosen standard

for it.

4. Opensource.

Therefore, we need a tool to perform the necessary semantic and syntactic translations. In the

end, we the files in the Resource Descriptor registry should be consumed and understand by any

component. The selected tool is Apache NiFi.

2.2.4.1 Apache NiFi

Open-source application, initially develop by the US National Security Agency (NSA) and now

under the wing of the Apache Software Foundation, design to aid in the integration and

automatization of data flows.

The core concepts of Apache Nifi13 are:

• FlowFile: Each piece of data moving through the system.

• Processor: Component responsible of making certain operation (creating, sending,

receiving, transforming, routing, splitting, merging, or processing) on the FlowFile. It is the

most important element of NiFi.

• Connection: Link between processors.

It has several characteristics that make it the best tool for the ODIN platform:

- Enables to perform different operations on data flows such as transformation, collection,

and uploading.

- Facilitates the interconnection between different systems (databases, mqtt brokers, FHIR

servers, etc).

- Can operate within clusters.

- Managed through a graphical interface that helps to visualise the elements

interconnected.

- Security mechanisms like TLS encryption.

- More than 300 processors available and the possibility to create new ones. Some of them

are: ConsumeKafka, ConsumeMQTT , ConvertJSONToSQL, EncryptContent,

ExecuteSQL, PublishKafka, PublishMQTT, PrometheusReportingTask,

ExtractHL7Attributes, etc.

The most important characteristic of NiFi is that the processors are like the connectors from

Apache Camel, with the added value of the possibility to transform the data. In a following section

we will make a performance test between NiFi and Camel to choose the best connecting

technology.

13 NiFi documentation, https://nifi.apache.org/docs.html

https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-kafka-1-0-nar/1.19.0/org.apache.nifi.processors.kafka.pubsub.ConsumeKafka_1_0/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-mqtt-nar/1.19.0/org.apache.nifi.processors.mqtt.ConsumeMQTT/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.19.0/org.apache.nifi.processors.standard.ConvertJSONToSQL/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.19.0/org.apache.nifi.processors.standard.EncryptContent/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.19.0/org.apache.nifi.processors.standard.ExecuteSQL/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-kafka-1-0-nar/1.19.0/org.apache.nifi.processors.kafka.pubsub.PublishKafka_1_0/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-mqtt-nar/1.19.0/org.apache.nifi.processors.mqtt.PublishMQTT/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-prometheus-nar/1.19.0/org.apache.nifi.reporting.prometheus.PrometheusReportingTask/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-hl7-nar/1.19.0/org.apache.nifi.processors.hl7.ExtractHL7Attributes/index.html
https://nifi.apache.org/docs.html

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 27

2.2.4.2 NiFi in the ODIN Platform

Currently, an instance of NiFi has been deployed in the testing infrastructures in AWS. The

application runs as a pod in Kubernetes that exposes its services via a nginx ingress controller.

Users connected to the VPN with the appropriate certificate and credentials can access the

graphical interface and start creating flows. Additionally, the communication is secured using

HTTPS.

Before start creating the flows, we must register to the platform with a user and a password.

Once the user is correctly identified he/she can start creating the first flows.

To test the infrastructure and the tool, an initial data flow between Kafka and a MQTT broker has

been successfully created. We have a MQTT consumer that reads data from the MQTT broker

and a Kafka Publisher that uploads it to the Enterprise Service Bus implemented with Apache

Kafka.

The MQTT broker is also deployed in the testing infrastructure, and it will receive data from the

Transparent Robot or other devices that use the MQTT protocol.

Figure 11: NiFi login page

Figure 12: NiFi flows canvas

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 28

2.3 Resource Directory
The Resource Directory will be implemented using Apache Jena Fuseki14. Apache Jena Fuseki is

a SPARQL webapp, developed by the Apache Software Foundation, it contains a UI for admin

and query, and the backend for integration with other systems. It is already published in Docker

Hub. It allows users to manage and query RDF (Resource Description Framework) data using the

SPARQL query language. RDF is a standard for representing data in the form of statements about

resources, where each statement is composed of a subject, predicate, and object. This data

model is often used in the semantic web to represent information in a way that can be understood

and interpreted by machines. Fuseki provides the SPARQL 1.1 protocols for query and update as

well as the SPARQL Graph Store protocol. Fuseki is a part of the Apache Jena open source

project to support and boost the adoption and implementation of the semantic web, in fact Fuseki

is just the component of the framework which exposes most of the functionality as REST web

services, together with a front end as mentioned. Thus, it employs Jena’s TDB, the triple store

component, to provide a robust, transactional persistent storage layer, and incorporates Jena

text query.

SPARQL is a query language for RDF data. It allows users to retrieve, construct, and update RDF

data stored in a triple store. SPARQL can be used to query data from multiple sources and retrieve

results in a variety of formats. It is a powerful tool for working with RDF data and has been widely

adopted in the semantic web community. The Jena framework can further improve the value of

SPARQL by applying ontologies and inference to the query. This way relational knowledge

embedded in the ontology can be applied to the query and get initially hidden results.

Since ODIN already has a working ontology to describe KERs and other resources (see

Deliverable D3.3), it makes sense to employ a triple store and a SPARQL engine to handle the

highly dynamic, and heterogenic hospital resources connected to ODIN in a semantic way. Since

the backbone of ODIN platform is based on microservice architecture, Fuseki with its REST

services fits in the overall concept very well. Thus, the main component of the resource directory

is composed of the Fuseki module (bundling other Apache Jena semantic web technologies),

enabling raw SPARQL queries to be able to retrieve the appropriate information in the desired

format.

In terms of functionality, other components in an ODIN deployment can query for resources of a

particular type, with particular capabilities and particular conditions using SPARQL query of the

matching elements, this simple query could be enhanced with inference, meaning that the

capabilities, or conditions could be expanded. A typical example of this is a location-based query,

if the query is, for example, looking for all resources physically located in a room, the inference

engine will also include resources <carried by> robots and resources <inside> resources

(recursively) which <are located> in the desired the room. The employment of ontologies also

means that the semantics of the query can be adapted; for example, a component might be

interested in persons, where another component might be interested in employees, when the

underlying data is the same semantic technologies are capable of returning the appropriate

information to each component without duplicating processes nor data, realising that semantically

in certain cases persons and employees are the same datapoint.

14 https://jena.apache.org/documentation/fuseki2/index.html

https://jena.apache.org/documentation/fuseki2/index.html

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 29

On top of the Fuseki engine, the Resource Directory offers a layer of REST services to facilitate

common operations, as well as connecting to the ESB to be able to keep the backend model

synchronized with the real world; and also ensuring issued queries are secure.

2.4 Possible Limitations
Once we have presented the technologies that will be used for the Resource Descriptor, we must

take a step back and analyse them from a more critical point of view to find the possible limitations

they might have and in the following deliverable iteration try to tackle them.

Web of Things, AsynAPI, OpenAPI, FHIR

Although these technologies constitute a standard that helps describing a wide variety of

protocols, architectures, and implementations. They are not widely as implemented as it was

expected yet. Some manufacturers prefer to use their own in-house defined standard for their

products. It would be necessary to define a protocol on how to act in these cases were none of

the defined technologies suit the manufacturers. In any case, the ODIN platform and its partners

will also advocate for opensource and standard technologies.

NiFi

The performance of NiFi in Kubernetes clusters and within a high availability policy are being

evaluated.

Additionally, the tool provides with several processors and possibilities, some of them have not

been fully analysed yet, since the works have focused on evaluating the alternatives and deploying

the chosen one. Nonetheless, those functionalities that would not be available in NiFi by default

could be develop and included in the implementation, if necessary.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 30

3 Resource Gateway
The Resource Gateway is in charge of connecting all the resources and services available within

a deployment instance but also in other instances from other hospitals to the upper layers of ODIN

platform, and finally must allow the interaction of external users or systems with the platform.

As stated in “D3.11 ODIN platform v2” and “D4.2 Implementation of Local CPS-IoT RSM Features

v1.0” the connection should be easy, following an Enterprise Service Bus with a canonical

messaging system and be scalable and reliable.

3.1 Introduction

3.1.1 Resource Gateway v1

From the ODIN architecture defined in D3.11, here we recall Important services or components

for the Resource Gateway:

• The ESB, which is the main communication channel for exchanging messages among

services in the platform and other possible channels, such as streaming or peer-to-peer.

• The transport services that connect internal resources and services, such as IoT, robots

and other services to the ESB. The transport services read or write information from and

to the resources bridging protocols and making them interoperable through the platform.

• The API Gateway, which exposes the platform functionality to external users and external

services to the platform in a secure way.

• As part of the work developed during phase 2 of the project, a new component has been

attached to the Resource Gateway, the History component. It will be in charge of

recording all the messages of the topics shared among the ESB.

As part of the first version of this document, several points were scheduled to be developed and

defined for the Resource Gateway.

• The solutions to be used.

• A mechanism to decide the list of the topics that need to be created in the messaging bus

related to resources, services, and storage.

• The configuration of the bus to work under the situations to be managed.

3.2 Selected Technology for Messaging Bus
The selected technology for the messaging bus is Apache Kafka. “D4.2 Implementation of Local

CPS-IoT RSM Features v1.0” contains the comparison of messaging solutions and Kafka

highlighted as one of the best approaches.

Due its capabilities, scalability, and ease of connection, among other features such as rate of

adoption in private and public projects, Kafka has been adopted for ODIN.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 31

3.2.1 Kafka

D4.2 already explained the main and general characteristics of Kafka, in this version we will focus

on the specific implementation made for the ODIN platform and how the elements have been

deployed and work.

The STRIMZI project15 has been used to deploy Kafka in Kubernetes. In the following lines we will

talk about how the architecture looks like using STRIMZI and the final classification for the topics

that the KERs will subscribe and publish to.

3.2.1.1 STRIMZI Architecture

STRIMZI eases the deployment of Kafka in Kubernetes be providing with images and Operators,

that simplify the process of:

- Deploying and running Kafka clusters and components.

- Configuring and securing access to Kafka

- Upgrading Kafka

- Managing brokers

- Creating and managing topics and users

15 STRIMZI documentation, https://strimzi.io/docs/operators/0.24.0/full/deploying.html

https://strimzi.io/docs/operators/0.24.0/full/deploying.html

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 32

In the following image we see a scheme of the Architecture.

From right to left we have:

1. Cluster Operator: Deploys and handles Kafka clusters such as Kafka brokers, Zookeeper,

Entity Operator and Kafka Connect.

2. Entity Operator: Contains:

a. User Operator: Handles users using Kubernetes resources, that specifies the

authentication and authorization methods, the access to topics and the rights.

b. Topic Operator: Handles topics using Kubernetes resources. Allowing to perform

create, delete, or modify operations on topics and keep them in sync.

We can also see that there are custom resources that are used to define the specific configuration

of the clusters.

The figure above presents the standard minimal deployment. Additionally, we can include the

Kafka Connect cluster that deploys connectors that enable the communication between Kafka

and other messaging systems, databases, and servers for external data streaming.

3.2.1.2 Connectors

The Kafka Connect Operator is the component within the STRIMZI architecture responsible of

managing and deploying the specific connectors, but we must indicate and provide with the

Figure 13: STRIMZI architecture

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 33

connectors we want to use. These come from section 3.4 “Selected Technologies for Transport

Services”.

3.2.1.3 Topics

Topics are the message queues that can be created in Kafka to publish and read messages. Part

of the work to create a good ESB is to select the types of topics and the number of topics.

After checking the different strategies to create the topics, it was decided to have a low number

of general topics, where the resources could publish or read the messages grouped per types.

The other option, use one topic per resource, would create a lot of operational work. Thus, the

consortium has decided to use an iterative approach and in case a deeper granularity is required

in some case, the platform will evolve to manage those situations.

Another important decision was to have 3 levels of topics: Core, Platform, and Custom topics.

• Core topics: those that are intrinsic to the ODIN architecture such as metrics, Resource

Manager information…. All defined in Table 3. The structure would be as follows: Base

name (i.e. odin.core.) + Component’s name (i.e., metrics.) + Specific topic (i.e., control).

That leaves the following topic: “odin.core.metrics.control”.

• Platform topics: Those that are defined by platform components, as well as standard

dataflows (e.g. common IoT statements) such as: “odin.platform.iot.rtls.tagid”.

• Custom topics: new Resources may define custom topics to cover dataflows not fitting in

the previous topics (e.g. temporal topics) such as: “odin.custom.non-anonymized-data”

The following tables contain the first version of the Topics that would fit into ODIN platform.

Core topics

Table 3: Core topics

Component Base name odin.core Subscribers Publishers Description

Metrics

 metrics.control All metrics Messages to

control actions

on metric

publish, etc…

 metrics.status ODIN control

components

metrics messages

about metric

component

status

Resource

Choreographer

resourcechoreograph

er.control

Components

and services

Resource

Choreographer

messages

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 34

Component Base name odin.core Subscribers Publishers Description

Resource

Manager

resourcemanager.co

ntrol

Components

and services

R. Manager Messages

about

controlling

services,

general control,

not task

choreography.

For example,

the platform

kicks a service

due to security

problems.

 resourcemanager.joi

ned

R.Manager or

any service that

wants to be

aware of KER

and services

joining the

platform

Components

and services

Messages sent

by components

to join the

platform.

Messages will

include

information

about

interfaces

published,

schemas, etc.

(Async API,

WoT, OpenAPI,

FIHR)

 resourcemanager.left R.Manager or

any service that

wants to be

aware of KER

and services

leaving the

platform

Components

and services

Messages sent

by components

to leave the

platform and

stop offering

services.

DLT

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 35

 resourcefederation.c

ontrol

Any resource resourcefedera

tion

Messages sent

from DLT to

other resources

to perform

tasks on behalf

of another

hospital

request

odin.hospital.hospitali

d

resourcefedera

tion

services that

want to use

toher hospital’s

resources

odin.cloud resourcefedera

tion

services that

want to

communicate

with cloud

services or

resources

Component Base name odin.core Subscribers Publishers Description

DeadLetter

 deadletter Metrics all
Topic to

manage

several

situations.

Topic does not

exist

Message with

errors

Message

reaches a

threshold read

counter

number,

because it is

not consumed.

The message

expires due to

per-message

TTL (time to

live)[4]

Message is not

processed

successfully

log

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 36

 log all Any information

to be logged

 log.error all

 log.warning all

 log.debug all When debug is

active

Platform topics

Table 4: Platform topics

Component base name

odin.platform

Subscribers Publishers Description

RTLS iot.rtls

 iot.rtls.tagID Any service/KER

interested in a

concrete tag

position

RTLS Position and events

about a tag

Transparent

robot

iot.temperature Any service/KER

interested in

measurement data

Transparent robot

or other sensors

Events about

temperature

 iot.humidity Events about

humidity

 iot.pressure Events about

preassure

 iot.airquality Events about air

quality

 iot.light Events about light

 iot.dust Events about dust

 iot.noise Events about noise

Robot robot.status Resource

Orchestrator,

Resource Manager,

other KER interested

in robot status

robots Data about robot

status.

battery,

available/busy, etc.

 robot.inventory Resource Manager,

other service

robots, smart boxes Data about items

carried by a robot.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 37

Component base name

odin.platform

Subscribers Publishers Description

controlling

inventories

I.e , smart box,

catheters.

 robot.control robots Resource Manager,

Resource

Orchestrator, Web

applications to

control robots

Robots receive

instructions and

commands to

perform actions in

this topic.

AI ai.control ai Resource Manager,

Resource

Orchestrator, other

web apps

controlling ai jobs

Messages to

load/unload AI

models, launch jobs,

etc.

Data

HIS data.his.control HIS Any KER interested

in sending

commands to HIS

service

Messages to request

a job, send FIHR

data, etc.

 data.his.result Any KER that

requested a

command

HIS Job results

SQL BBDD

data.sql.control sql bbdd Any KER interested

in sending

commands to

BBDD

Commands for

BBDD (update,

create, insert, …)

Nosql BBDD data.nosql.control any KER interested

in sending

commands to

NoSQL BBDD

commands for

NoSQL BBDD

(update, create,

insert, …)

3.2.1.4 Implementation

Currently, there is a Kafka deployment based on STRIMZI in the testing infrastructures of the

project that contains the following features:

- 1 Entity Operator with 3 replicas.

- 3 Kafka brokers.

- 3 Zookeeper pods.

- 1 Kafka Connect Operator.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 38

- 1 MQTT-Kafka source connector. That can read messages from a MQTT broker and write

them to Kafka.

- 1 external connection to communicate with Kafka from outside the Kafka cluster.

- A UserOperator and a TopicOperator.

3.3 Technologies for the API Gateway
The deliverable D4.2 “Implementation of Local CPS-IoT RSM Features v1.0” did not contain a

real comparison of solutions for the API Gateway, because the requirements at that moment were

perfectly covered by the proposed solution. In time between deliverables, new requirements have

arisen that made necessary to evaluate additional technologies. Therefore, a comparison is

included here, plus a clearer definition of the expected functionality.

3.3.1 API Gateway functionality

The API Gateway (AG) exposes the platform functionality to external users and external services

to the platform in a secure way. Refining the functionality, here is a non-exhaustive list of the

functions the API gateway will implement:

• Synchronize with the Resource Manager (RM) to expose, update or hide new resources

that are added to the platform. In this way, when a new resource is added, in case it has

an API available that has to be exposed outside the platform, the API Gateway will get an

update from the RM and read the information available to publish the API in a secure and

ordered way.

• Act as a reverse proxy to external clients. So, the AG will forward incoming calls to the

right backend component/endpoint and answer with the response. REST is a must, but

compatibility with GRAPHQL and GRPC is a plus.

• Unify the component API’s into one homogeneous resource. For example. If two services,

RTLS and AI offer an API, those could be exposed as “https://api.odin.eu/ker/ai/ai_1” and

“https://api.odin.eu/ker/rtls” for example, with a common root, simplifying the integration.

• Secure the services access with Keycloack integration.

• Transform incoming or outgoing data in case it is needed.

• Force rate and throttling policies.

Figure 14: Kafka STRIMZI pods

Figure 15: Kafka STRIMZI service

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 39

3.3.2 KrakenD

KrakenD16 is an opensource API Gateway, focused on linear scalability and low operational costs

to offer a single point of access to microservices from external clients. About scalability KrakenD

shows better benchmarks for requests/second than their competitors such as Kong or TYK. This

is achieved thanks to its stateless design, which does not rely on databases.

But it is not only a simple API gateway, because it aggregates lots of microservices to process

requests and responses, as visualized in Figure 16.

Figure 16: KrakenD conceptual microservice architecture

KrakenD can transform, aggregate, or remove data from your own- or third-party services. It also

implements some patterns to hide the complexity to deal with multiple REST services, isolating

clients from the micro-service implementation details. This way it can transform the requests and

unify them for example under the same root.

Figure 17: Merging services

16 https://www.krakend.io/

https://www.krakend.io/

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 40

All the setup for the API Gateway can be done through a web application called KrakenDesigner,

but it also can be done writing a json and loading into KrakenD using the console.

Moreover, KrakenD has Graphql support through translating agents, opening the integration to

other types of clients, beyond REST style.

KrakenD also provides connection to Async sources and consumers, for example to RabbitMQ

or Kafka, easing the tasks to interact KrakenD with the rest of KERs and services in the platform.

To extend its functionality, KrakenD has lots of plugins, but also they that can be created using

LUA, Martian DSL, Google Cel or Go. Some of the most important integration it offers for ODIN

purposes are Kafka, Prometheus metrics and Keycloack integration, all, solutions already

selected for ODIN.

One of the missing features is static content delivery, but due to ODIN platform nature, static

content may be reduced to documentation.

Security

KrakenD manages most common security features such as OAUTH, JWT, SSL, mutual

certificates, and a list of protections for clickjacking, XSS, HSTS, HPKP, and mime sniffing.

Another security feature beyond securing the API is to remove sensitive data, so it can be used

to anonymize responses from the services or inputs from the clients.

Rate limit also is available to prevent flood attacks and manage API rate access.

For ODIN purposes, one of the key features it is the integration with Keycloack. This integration

allows that all the Authentication can be moved to Keycloak. So a client connecting to an API

through KrakenD, first must get a JWT token from Keycloack, and then use it against KrakenD.

KrakenD still manages the Authorization setup, and checking the JWT can determine whether to

grant a client to access an API or deny it. Following image shows the process to authenticate and

authorize a client.

Figure 18: KrakenD security mechanism

Metrics

KrakenD offers access to metrics and has integration to many tools with Open Census telemetry

specification. Important integrations are Prometheus, Graphana and Logstash.

For example, the Graphana Dashboard includes:

• Requests from users to KrakenD

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 41

• Requests from KrakenD to your backends

• Response times

• Memory usage and details

• Endpoints and status codes

• Heatmaps

• Open connections

• Throughput

• Distributions, timers, garbage collection and a long etcetera

As Prometheus is supported, the ODIN metric system has direct integration.

Setup and Deployment

KrakenD supports most types of deployment as bare metal, clusters, Docker volumes and images

and Kubernetes, plus CI/CD facilities.

This eases how KrakenD is adopted and how operational issues are solved.

The setup can be performed from the managing dashboard or setting up the configuration files

which follow JSON format. This opens the opportunity to manage KrakenD despite it does not

have an API for setup purposes.

3.3.3 TYK

Tyk is an API Management and API Gateway solution, focused on providing a solution which does

not rely on previous open-source solutions, with no lockouts among its open source and

enterprise paid solution.

Tyk is an open-source Enterprise API Gateway, supporting REST, GraphQL, TCP and gRPC

protocols, which is a desired feature for ODIN due to its objective to allow as many integrations

as it can with ease of adoption.

It also allows for data and resource transformation, thus it can convert from SOAP to Graphql for

example, remove or transform data payload and unify resources.

Importing Swagger and OAS2/3 to scaffold an API is very easy, so you can create the skeleton of

a service with very low effort.

Tyk API allows managing all the API Gateway programmatically, which is very appealing to

automatize publishing new endpoints.

Another plus is the plug-in architecture. Tyk can add more functionality with plugins developed

using Go, javascript, Python or any language which supports gRPC.

To add some features, Tyk supports API versioning, Developer portal to document API’s (paid

version), hot configuration reloading, webhooks, and has a very nice performance in terms of

request resolved per second, but not as good as KrakenD.

Security

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 42

Tyk offers OIDC, JWT, bearer Tokens, Basic Auth, Client Certificates and more, plus a very

granular access control, which controls to grant access to one or more APIs on a per version and

operation basis. Blacklisting and whitelisting are other features part of the security package.

On the other hand Tyk does not have direct integration with Keycloak out of the box for the open

source version, but offers OpenID Connect integration through Tyk Identity Broker. Integrating

authentication and authorization with Keycloak may involve some sort of setup, harder than using

APIMAN or KrakenD.

Figure 19: OpenID Connect authentication flow

Quotas and rate limiting can be setup also for the API’s, giving a good protection and control over

the number of requests allowed. There are global rate limit and per API limit, which controls all

the users accessing an API.

Metrics

Tyk uses its Pump server to provide metrics about what is happening in the API Gateway and the

endpoints. With pump, the metrics are extracted from Tyk and sent to any compatible store, for

example Prometheus which is very interesting to ODIN, but also MongoDB, ElasticSearch, Kafka

and others.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 43

Figure 20: Tyk Pump component extracting data to a store

Setup and deployment

Tyk supports Docker, and Kubernetes. In addition has Kubernetes native declarative API support

using Open Source Tyk Operator . Tyk Operator can configure Tyk Gateway in a drop-in fashion,

replacing standard Kubernetes Ingress. It allows managing your API definitions and security

policies with it.

Figure 21: Tyk operator for Kubernetes

Tyk also supports setup through its API and using the setup files, but it lacks a UI to manage it,

only available for paid versions.

Regarding dependencies, Tyk only has a dependency on Redis database.

https://tyk.io/docs/tyk-oss/ce-helm-chart/
https://github.com/TykTechnologies/tyk-operator
https://github.com/TykTechnologies/tyk-operator/blob/master/docs/ingress.md

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 44

3.3.4 Istio

Istio is a different type of solution, and it is not only an API Gateway. Istio supports Kubernetes to

provide a programmable, application-aware network using the Envoy service proxy. Working with

Kubernetes Istio brings universal traffic management, telemetry, and security to complex

deployments.

Figure 22 shows the concept of Istio, managing in and out traffic, the side-car proxy to connect

the services and some features managed by Istio control plane.

For traffic management, Istio has several features that make it attractive. With the concept of

service mesh, Istio handles ingress traffic into the Data Plane services located as a mesh under

the control of the Control Plane. Inside the mesh, the traffic can travel between the services, while

the Control plane handles service discovery, setup, and metrics.

Istio provides quite interesting services when managing traffic, such as traffic redirection, load

balance, dynamic routing requests, circuit break, timeouts, traffic mirroring ot copy data to more

than one destination, traffic shifting to test and adopt new versions of an API or service and

managing ingress/egress traffic to and from the mesh.

Most of the work for Istio is performed using the concepts of Gateway and Virtual Service

components. Gateway is used to manage the incoming and outgoing traffic, while the Virtual

Service is a representation for an application or service running in the mesh.

Beyond its traffic management and all the other features, Istio is currently becoming the API

Gateway for Kubernetes. Recently has developed an implementation for the Kubernetes Gateway

API specification using Istio, which provides a set of Kubernetes configuration resources for

Figure 22: Istio concept

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 45

ingress traffic control that overcomes Kubernetes Ingress limitations17, and can be used together

with the service mesh or without it. This new feature is a very interesting one for ODIN’s

automation and operational processes.

Istio does not have a management console or a developer portal but its integration with

Kubernetes help handling operation tasks.

Security

Istio offers security features for the outer perimeter and inner perimeter in the service mesh. For

example, it supports traffic encryption to defend against man-in-the-middle attacks, it provides

service access control with fine-grained access policies, authentication, and authorization, and it

also has auditing tools to determine who did what at what time.

Istio has its own Certification Authority to manage the certificates used in the infrastructure, an

strong Configuration API Server to manage authentication, authorization and security policies and

other services that help keeping the services in the right operation such as side-car extensions to

monitor telemetry and manage communication among services in the mesh.

17 https://istio.io/latest/blog/2022/getting-started-gtwapi/

Figure 23: Istio security concepts

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 46

Istio also supports Keycloack and other Identity providers to delegate authentication, such as

Auth0 or Google Auth.

Managing policies with Istio has some advantages as they are committed on demand to the

services, thus, managing changes and operational tasks is easy when adapting the infrastructure

and applications to the project needs.

Istio supports HTTP, GRPC and many TPC traffic managing, which opens a wide range of

protocols support.

Metrics

Istio has several ways to get metrics from the service-mesh in case you use it but also supports

ingress and egress traffic metrics related to the Gateway API. Storing Requests per service or

traffic type can be done with the right setup and then inspect the results using Prometheus which

is a a desired integration tool.

Examples of supported metrics out of the box are:

• Request Count (istio_requests_total): This is a COUNTER incremented for every request

handled by an Istio proxy.

• Request Duration (istio_request_duration_milliseconds): This is a DISTRIBUTION which

measures the duration of requests.

• Request Size (istio_request_bytes): This is a DISTRIBUTION which measures HTTP

request body sizes.

• Response Size (istio_response_bytes): This is a DISTRIBUTION which measures HTTP

response body sizes.

• gRPC Request Message Count (istio_request_messages_total): This is a COUNTER

incremented for every gRPC message sent from a client.

Figure 24: Istio security architecture

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 47

• gRPC Response Message Count (istio_response_messages_total): This is a COUNTER

incremented for every gRPC message sent from a server.

Setup and deployment

Istio setup and deployment can be performed using several tools, but the most important for ODIN

are the support of Helm charts and the Kubernetes Operator, which are aligned with ODIN

objectives and tools.

3.3.5 API Gateway solution comparison

The following table contains the comparison of the solutions.

Table 5: API Gateway technologies comparison

Specific

requirement

APIMAN KrakenD Tyk Istio Reason

Is what is

needed
9 8 10 9

All are API Gateways and fulfil the

needs. APIMAN offers more

management that KrakenD, plus an

API Rest to manage APIMAN, that

Krakend can only be setup using files.

Ease of

adoption
9 9 9 8

All the solutions have very good

documentation but Istio is closer to

Kubernetes

Scalability 7 10 8 10

Tests reports KrakenD is more

scalable than the other API Gateway

solutions

Reliability 10 10 10 10
 With the proper setup all the solutions

are reliable.

Security

(Kerberos,

OAuth, etc.)

10 8 7 10

All can use Keycloak more or less, but

APIMAN and Istio can handle

authorization better

Data

integration
5 8 10 9

Kraken supports Kafka integration out

of the box, plus Graphql, while

APIMAN not. Tyk offers integration for

Graphql, Grpc, Istio is fully integrated

with Kubernetes and manages more

type of traffic.

Support 8 8 8 8

All have very nice documentation.

Direct support is provided under paid

versions or through the community

forums.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 48

Deployment

facilities
5 10 10 10

Deploying Istio, KrakenD and Tyk into

Kubernetes have better support in

general. Operational task may be

easier than using APIMAN

Size of

project to be

used

9 9 10 10

Due to scalability and operational

features Kraken can manage bigger

projects in term of throughput and

resource and data transformation, but

APIMAN has more management

features which are enterprise

interesting and it also scales pretty

well. Tyk also scales well and has

more management facilities than

Kraken

Cost 10 10 10 10 All are free.

Licence 10 9 9 9

All are open-source but KrakenD

community version does not have all

the features as the Enterprise version

Number of

projects

using it

- - - -
No information about the number of

projects found.

Number of

languages
1 1 3 1

Java for APIMAN. GO for KrakenD

plus several scripting notation. Tyk

offers Python, Javascript and Go. Istio

provides C++

Monitoring 7 10 10 8

KrakenD and Tyk have more

integration plugins for metrics and

have Prometheus integration

Hard

dependencies

on other

projects or

solutions

1 - 1 -
APIMAN uses Elasticsearch to store

metrics and Tyk Redis database.

Innovation

impact
8 7 9 10

There is no special innovation impact

on using an API Gateway, but the way

is going to be used in ODIN gives a

kind of innovation to all, proportionally

to the number of managing facilities

and compatible interfaces. Istio

approach is more advanced than other

solutions as works directly for clusters

and with microservice mindset.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 49

Due to ODIN requirements, objectives, and its adoption in the developer community, Istio and Tyk

seem to represent the two best options to be used as API Gateway. The facilities, supported

protocols, Kubernetes integration, metric reporting, and security, make both a serious choice with

long term mindset. Anyway, Tyk offers the API Manager, a lighter solution in terms of setup and

a more traditional API Gateway solution.

Therefore, Tyk will be selected as API Gateway for ODIN.

3.3.6 API Gateway final approach

The API Gateway will connect the exposed services directly to the internet. Thus, the Kafka bus

will not be used to forward the calls from clients to access the services.

On the other hand, some operational tasks could be handled through the Kafka bus using a

connector.

With this approach, the API Gateway would listen to messages on key topics such as when a KER

wants to publish a service, and read the Resource Descriptor from the Resource Manager, to

publish the API specification, using the right security and transformation policies. Updating an API

or security policies could also be performed this way.

Because API Gateways have Kubernetes support can be managed through declarative operators,

publishing task could also be driven using Kubernetes facilities.

3.3.7 Limitations of Tyk

A possible limitation for Tyk, the selected technology for the API Gateway, could be that Tyk does

not have a Dashboard or Developer portal, as reviewed in the comparison, but has a powerful

API to be integrated and documentation could be shared using ODIN documentation component.

Beyond functionalities, Tyk has a wide enough community for support and a company behind its

developments. Therefore, there is no reason to worry about future deprecation of the tool.

3.4 Transport Services
The transport services are represented in the architecture by the Connector components.

The initial protocols to be implemented due to the requirements are MQTT and Kafka connectivity

for the RTLS.

Those connectors must act as a bridge among the protocols and messages managed outside the

platform, and the ESB.

Thus, the functionalities to be implemented are the following.

For input connectors, publishing information into the Kafka ESB:

• Adapt the outer protocols to Kafka

• Transform the information coming from the resources to the messages defined to work

in Kafka for each component.

• Publish the information into the right topics

• Be compliant with the messages required by the platform (e.g. Resource Descriptor

message to publish to the Resource Manager.

For the output connectors, reading information from Kafka and sending it to the components:

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 50

• Adapt the inner messages and protocols of the platform, to the KER’s

• Listen to the required topics

• Be compliant with the messages required by the platform (e.g. messages from the

Resource Descriptor or the Resource Choreographer)

3.4.1 Implementation

Considering the required features there are three ways to implement the connector components:

in-house development (RTLS example), Camel plugins (explained in D4.2 section 3.5.118) or NiFi

processors.

3.4.1.1 Apache Kafka Connector (RTLS)

The RTLS has implemented a first version of its connector using Apache Kafka Connect

technology, which allows using it as a centralized data broker for simple data integration between

databases, search indexes, and files to drop them into Kafka.

Currently, the connector implements getting the messages from the RTLS and processing them

to follow a json schema. In this case, a source component from Apache Connect has been used

to read the data from the RTLS and publish it to the Kafka bus.

The following image sketches the architecture followed by the RTLS connector, where the

connector reads from a source using an adapter, process the data and forwards it to the

destination using another adapter.

Figure 25: Connector Architecture

The following figure contains the POJO for the RTLS message. Highlighted there are the

message’s attributes. The most important ones for the RTLS are the x, y and z coordinates, that

define the position of the Tag in the map. The attributes more important to the ODIN platform are:

the “version” (to differentiate between changes on messages versions), the “message” (that

provides additional information with respect to the whole JSON message been sent) and, finally,

the ”action”(to indicate certain action with respect to the message type).

18 D4.2 Implementation of Local CPS-IoT RSM v1

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 51

Each message is published into the Kafka bus in a topic that correspond to each tag MAC

address.

3.4.1.2 Apache Camel Kafka Connector

With the practical test of the Transparent Robot (bravely discussed in section 2.2.4.2) in mind, a

Camel connector was deployed using the Kafka Connect Operator. The goal was to connect the

Kafka broker with a MQTT broker since the Robot uses the MQTT protocol. This was successfully

deployed and tested.

3.4.1.3 NiFi connector

Afterwards, the NiFi technology was suggested and deployed, and it was seen that it also allowed

to connect different systems, among them, Kafka and MQTT. In the case of NiFi, instead of calling

to the elements that established the connection connectors it calls them processors, but in

practice they do the same.

One of the strengths of NiFi is that it provides with a graphical interface to interact with the

application and generate the flows. Using this interface, a MQTT consumer processor and a Kafka

Figure 26: POJO for RTLS position message

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 52

publisher processor were deployed and connected to each other creating a unidirectional (from

MQTT to Kafka) connection between both brokers.

This way, we were able to extract the messages sent from the Transparent Robot to the MQTT

broker from the MQTT broker and publish them to the Enterprise Service Bus, that is Kafka.

3.4.1.4 Performance test between Camel and NiFi connectors

In other to compare the two possible solutions, Camel connectors and NiFi processors, a

performance test was design to see how both solutions behave under the same circumstances.

The test consisted in sending 100 messages per second during 5 minutes to the MQTT broker

and analysing the performance of Kafka depending on how the connection was implemented,

either using the Camel connector or NiFi.

The results for the test can be summarize in the following graph.

Figure 27: NiFi MQTT-Kafka connector

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 53

Figure 28: Camel vs NiFi CPU User Time

The graph shows the percentage of CPU time used by user processes. The higher the value the

more CPU is being consumed, therefore the application is more demanding in terms of server’s

resources. In Figure 27, we have the NiFi process in blue and Camel in red. We can see that both

lines cross each other several times and, in fact, the mean for both is around 5,3. Nevertheless,

there is a difference on how the processes behave over time. Camel is less stable and has very

pronounced peaks from time to time. In the case of NiFi we also see few peaks, but they are less

pronounced, and it tends to stabilize over time. We can conclude that NiFi is better than Camel

in terms of performance so NiFi processors will be used as connectors.

Another reason to choose NiFi is the before mentioned user interface that the application provides

to use it. That facilitates a lot the deployment of connections between systems. Whereas with

Camel, we have to create a personalized Docker image with the connectors and use it to deploy

the Kafka Connect Operator. Finally, we would need to use yaml files to configure the connection

in the Linux terminal.

3.5 Possible Limitations
Messaging Bus

The technology selected should full fil all the potential needs the ODIN platform would have. In

the case of an overload of the bus due to a massive message arriving, the Kafka deployment

could be easily upscaled.

In the case of the topics, we could face some limitations on the topics that have been defined,

because they might be insufficient for some KERs. In that cases new topics could be created.

API Gateway

As reviewed in the comparison, Tyk lacks a Dashboard Manager to manage it and does not have

a developer portal that could be used to expose API documentation and enrolment.

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

%
 o

f
C

P
U

 t
im

e
u

se
d

 b
y

u
se

r
p

ro
ce

ss
es

in

 e
xe

cu
ti

o
n

Sample Number

CPU User Time

us NiFi us Camel

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 54

The Dashboard Manager is an UI interface to the Tyk API functionality, thus, while it is a nice to

have, due to ODIN automation objectives and mindset, it is not a problem, as most of the task will

be performed programmatically using the API or the Kubernetes Operator.

Regarding the Developer Portal, it is also a nice to have feature, but its main functionality, which

is documentation, can be solved by ODIN’s documentation components.

The most important drawback it the lack of direct Keycloak integration which should be done

through a concrete setup. Another option is to purchase Tyk Dashboard.

Transport services

The connectors will be under the responsibility of the KER that would want to interact with the

ODIN platform. The development of those might suppose a limitation. To overcome this limitation

a workshop to show how they are deployed and developed will take place and the necessary

documentation will be provided.

3.6 Technologies for the History component
The History component oversees being the memory of ODIN, to support several use cases such

as check what happened and when it happened, for support purposes and testing, but also be

part of the RMS Dashboard to be managed as any dataset in the platform.

Some of the high-level requirements for this component are:

• Be scalable to handle high throughput.

• Support to listen to a set or all the ODIN topics.

• Record all the messages as time series.

Data stored by the History component could be used as a new dataset or 1 dataset per topic

stored. This way new use cases could be developed.

Here we present several solutions to create the History component.

3.6.1 Kafka

Kafka can keep all the messages shared in the topics as they are stored in the topic if the retain

policy says so. Therefore, by setting up the right retain policy, ODIN could use the ESB itself to

store all the data.

Once stored, a consumer could read the data just by setting the reading offset, the position where

to start reading, to 0. This way, the consumer could read all the messages from the beginning.

While it is a very lightweight and easy method to store all the information, it lacks query capabilities

as it is not a database. This minimizes the cases to use it as datastore, and here are some of

them:

• To repeat the processing of the data from the beginning when the logic of processing

changes.

• When a new system is included in the processing pipeline, and it needs to process all

previous records from the very beginning or from some point in time. This feature helps

avoid copying the full dump of one database to another.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 55

• When consumers transform data and save the results somewhere, but for some reason,

you need to store the log of data changes over time.

3.6.2 SQL Database

An SQL database can listen through a connector to all the topics or a set of topics and store each

message.

This approach would require more development in some cases but most of the databases have

Kafka integration.

Once stored, a consumer can read the database using sql queries, which has clear advantages

over Kafka message retention approach.

On the other hand, number of tables can grow as many topics exist, plus other drawbacks as

data should be stored as blobs of data that cannot be accessed or inspected easily.

3.6.3 No-SQL Database

No-SQL databases can store time series of data, with heterogeneous schemas and scales

horizontally very well.

No-SQL databases also provide a query API, not as powerful as SQL, and data can be stored

with less constrains than using SQL databases as do not require data normalization. Furthermore,

data can be inspected while stored in some solutions.

Usually No-SQL are a better approach for real time and event applications.

3.6.4 Status

By the time of this deliverable is written, several solutions are being analysed, such as InfluxDB

for time series sensor data, and other object stores such as S3, ElasticSearch, Cassandra and

MongoDB19. Apache Kafka Connector project has lots of connectors already created and can

interact with those solutions to record messages stored in the topics.

19 https://db-engines.com/en/system/Cassandra%3BElasticsearch%3BInfluxDB

https://db-engines.com/en/system/Cassandra%3BElasticsearch%3BInfluxDB

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 56

4 Measurement collection system

4.1 Introduction
Gathering metrics, monitoring components, and configuring alerts is a fundamental piece for

setting up and overseeing a service-based system. Having the option to determine what's going

on inside a framework, what assets need consideration, and what is causing a stoppage or

blackout is necessary. While planning and monitoring can be a challenge, including it from the

beginning into the service infrastructure is an important added value that assists the teams with

focusing on their work, delegating the obligation of oversight to an automated system.

The ODIN measurement collection system could offer a very dependable service for many

stakeholders. System administrators could monitor the whole system to make decisions about:

• Infrastructure resources: by monitoring the utilization of the current infrastructure

resources

• Security: by being able to detect intrusions or denial of service attempts

• Configuration: by being able to trace specific cases and share results within the team and

with support.

Hospital administrators and clinicians would be able to also take advantage of the measurement

collection system, as this system would be able to also handle not so traditional system metrics.

A broad classification of these metrics include:

• User perceptions: metrics depicting citizen satisfaction and clinical impact.

• Outcomes: helping better understand clinical treatments and their impact across the

patients in the hospital

• Economic aspects: enabling administrators to take smarter decisions.

• Organizational aspects: understanding where the hospital processes could be improved

and how.

• Operational aspects: metrics regarding efficiency of the different hospital processes

• Sustainability aspects: helping maintain the service at cost.

4.1.1 Measurement collection system v1

The measurement collection software is architecturally divided in three blocks. For the first block,

collection (left side of Figure 28), the architecture contemplates two methods for metric collection.

The pushing metrics method is employed when the measured module actively initiates the

process, contacts the aggregator component (the central component of the KPI collection

system) using its interface to report at this interaction the metric. On the other hand, the pulling

metrics method is initiated by the measurement subsystem itself (through the polling module), it

contacts the module at the module’s predefined interface (which has been previously registered

in the RMS, see section 2.3) periodically polling the module for the latest batch of collected

metrics, which, if any, are then reported to the aggregator. There are certainly differences

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 57

between pushing and pulling metric methods, but neither can be discarded as it will pose an

integration issue later.

Figure 29: KPI subsystem architecture

The second block is the processing stage (middle of Figure 29) and is related to the collection of

the metric in a central component: the Aggregator. This component receives all the metrics being

produced in the system, stores them and then it routes them. Depending on the configuration,

i.e., the registered subscribers, each metric may be sent to custom processing (e.g., calculating

mean value per week out of individual measurements) which may produce more metrics, to the

dashboard, an alerting system, or to other subscribers as part of the ODIN functionalities.

The final block, the reaction stage (right side of Figure 29), is composed of 3 main components:

• The dashboard is used for reporting real-time, and historic, metrics directly to the user,

so they can then take decisions.

• The alert component evaluates the received values with a configurable set of rules, which

describe conditions which would trigger alerts, when an alert is triggered then the alert

component uses one of the configured notifiers to report the alert. Typically, the rules are

as simple as checking if a specific metric is over, or below, a specified value.

• The pluggable notifiers are components that report alerts through a specific channel.

There may be different notifier for sending reports through email, push notifications in the

dashboard, or more complex channels.

4.1.2 Final approach

For ODIN v2, the KPI system is limited to monitoring technical metrics, low level operations and

metrics of the platform and resources. The system is based on the popular open-source

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 58

components Prometheus20 (for managing metric collection, processing, and part of the reaction

stage) and Grafana21 (for displaying the metrics in customizable dashboards in the reaction

stage).

Figure 30: Prometheus, Alert manager (a Prometheus component) and Grafana stack (credit

medium.com)22

20 https://prometheus.io/

21 https://grafana.com/

22 https://medium.com/avmconsulting-blog/how-to-monitor-kubernetes-cluster-with-prometheus-and-grafana-8ec7e060896f

https://prometheus.io/
https://grafana.com/
https://medium.com/avmconsulting-blog/how-to-monitor-kubernetes-cluster-with-prometheus-and-grafana-8ec7e060896f

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 59

4.2 Selected technology
Prometheus is an open-source computer monitoring and alerting software. It records metrics in

real time in a time series database (with high capture capacity) based on the content of the entry

point exposed using the HTTP protocol. These metrics can then be queried using a simple query

language (PromQL) and can also be used to generate alerts. The project is written in Go and is

available under the Apache 2 license. The source code is available on GitHub and is a project

managed by the Cloud Native Computing Foundation along with other projects such as

Kubernetes and Envoy.

A typical Prometheus installation includes several building blocks:

• Several agents (exporters) that usually run on the systems to be monitored and will expose

the monitoring metrics.

• Prometheus for centralization and archiving of metrics.

• Alertmanager23 that triggers the issuance of alerts based on rules.

• Grafana24 for the return of metrics in the form of a dashboard.

• PromQL is the query language used to build dashboards and create alerts.

Prometheus uses the so-called white box surveillance. Applications are encouraged to expose

their internal metrics (using an exporter) so that Prometheus can collect them on a regular basis.

In case the application (or component) cannot do it directly (database, monitoring server), there

are many exporters or agents ready to use to fulfil this role, particularly for popular open-source

components. Some exporters also allow the communication management with some monitoring

tools (Graphite, StatsD, etc.) to simplify switching to Prometheus during migration.

Default ODIN Prometheus configuration performs service discovery by querying the RMS,

eliminating the need for extra configuration to scrape a new endpoint. Services should include

specific annotations if they want to be scraped by Prometheus automatically. Prometheus is also

configured with the AlertManager component, and some basic rules preconfigured. These rules

can be adapted to the pilots’ needs by editing the rules file, or through the GUI. The default

Grafana dashboards are community developed dashboards for monitoring nodejs25 applications,

since all of the interface layer modules are nodejs applications.

These basic metrics can already provide important KPIs such as number of accesses, response

times, and even some derived KPIs like average session time can be calculated. The system

already implements all the necessary aspects for automatic KPI collection display, and alert; with

potential to add post-processing and analysis capabilities; independently of the metric types, so

it is possible to include non-technical KPIs in the system with new metric collection and processing

components.

23 Alertmanager, https://prometheus.io/docs/alerting/latest/alertmanager/ , Last Access Jan. 2022

24 Grafana, https://prometheus.io/docs/visualization/grafana/ , Last Access Jan. 2022

25 https://nodejs.org/

https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/visualization/grafana/
https://nodejs.org/

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 60

4.2.1 Features Implemented

The selected software offers interesting features:

• Network translation of metrics (including logs)

• A basic set of exporters for technical metrics

• Centralization of metric processing and storage

• Querying of metrics

• Alert triggering based on rules

• Custom visualization of metrics (mostly time-based series), and multiple dashboards

On top of it the metric collection system automatically integrates ODIN components and

resources and self-configures its components to collect and display standard metrics.

The metrics could be classified in one of three broad categories, depending on the implementation

effort:

1. Monitoring system performance. Default exporters and other standard services can

already be used to provide these technical metrics.

2. Monitoring activities and tracking of services. Specific exporters and services have to be

implemented in order to extract and report these metrics

3. Monitoring of RUC performance and KPIs. High-level collection and post processing is

required, at this stage it might be complex to envision the system actually managing these

metrics without further implementation.

4.3 Possible Limitations
The metric collection system can manage numeric and discrete metrics. This system is tailored

towards technical aspects of the ODIN system operations; however, the hypothesis is that this

system could be reused to automatically collect, manage and report other metrics such as those

derived from the hospital needs, piloting, and business and sustainability efforts within the project

(which would also be applicable for a production hospital environment). As this is still a hypothesis,

it needs to be tested whether the effort to be invested in the implementation of the metric agents

(Prometheus exporters) for these higher-level metrics is returned in the benefits the system might

bring to the hospital decision process.

One clear limitation of the system is the capability of collecting metrics directly from users, for

example user satisfaction, PREMs and PROMs, which are very commonly used in the process

evaluation. Thus, it is important for future releases that the system incorporates questionnaire

management software. Additionally, this software should provide standardized questionnaires

such as SUS, TAM, EQ-5, or IEXPAC. In this way system administrators, hospital management,

or clinicians could easily launch questionnaire campaigns, particularly if the questionnaires are

already preloaded, to collect KPIs directly collected from the users and displayed real-time in the

dashboards.

Additionally, if these questionnaires (and answers) are compatible with FHIR standards, it makes

it even easier to exchange (semi) standardized questionnaires between instances. In a similar

way, compatible applications could better interoperate with the system, which is particularly

interesting for processing the results.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 61

5 Integration protocols for Local ODIN

instances

5.1 Implementation
The components defined above will run as microservices in the Kubernetes cluster. Each hospital

will have their own local implementation and only resources will be shared when necessary. NiFi,

Kafka, Fuseki and Tyk can be deployed based on docker images with the necessary connectors

and features. In the next steps the possibility of using helm charts will be considered. For each

component an installation manual and the necessary images will be provided.

Nevertheless, we must consider that the deployment scenario is heterogeneous, and we could

find all kinds of infrastructures in hospitals across Europe, or even the lack of them. Also, the

personnel available to maintain the infrastructure or deploy it could be insufficient. For those

cases, alternative implementation methods will be considered.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 62

6 Conclusions and next steps
The previous version of this deliverable presented several technologies for the different

components and left us with the task to make a choice between the alternatives. In this new

version, we have presented the choices made and the improvements in the deployment of the

selected technologies. Additionally, new components have been included and the technologies

for them.

In the next version of the deliverable, D4.4, the refined components will be presented, their

integration with each other and in the ODIN platform.

With respect to each component individually, conclusions and next steps will be covered in the

following lines.

Resource Descriptor

In the case of the Resource Descriptor a multi-technological approach has been chosen were all

the standards can complement each other. Additionally, we have presented NiFi as integrating

tool. Progress has been made in the deployment of a NiFi instance and the application of the

chosen standards to some of the technologies in the catalogue. On the other hand, another tool,

Fuseki, has been introduced. Fuseki will be the database used to store the Resource Directory

data.

The work will continue with:

- The integration of the standard using NiFi.

- Deployment and integration of the Resource Directory using FUSEKI.

Resource Gateway

The chosen technology for the Messaging Bus has been Kafka. It has been deployed using

STRIMZI. Next steps will focus on adding security.

In the case of the Resource Gateway a deeper analysis has been made on the possible

alternatives and the next version of the deliverable will present the chosen one.

The Transport Services will use NiFi and, for the cases where it would be necessary (like the

RTLS), in-house developed connectors. Next steps will focus on further testing the connectors on

site.

The API Gateway will use Tyk solution to expose, control and manage the different services

published by ODIN platform to external users or systems. A possible procedure to manage how

to publish or update the exposed API has been sketched. Following work will go through the

concrete messages to implement the sketched process, plus the creation of a specific connector

and setup of the solution.

Finally, the History component will be developed in depth with the objective of selecting the right

implementation for the requirements stated and the available solutions. Currently the aim is to

store all the Kafka messages that are interesting for ODIN.

Measurement collection software

The selected technology for measurement collection system is Prometheus, a widely used open-

source system to collect could metrics, together with Grafana, another commonly integrated

open-source system to create insightful dashboards from Prometheus metrics.

Deliverable 4.3 – Implementation of Local CPS-IoT RSM Features v2

Version 1.0 I 2023-02-22 I ODIN © 63

Although the system is intended to collect technical metrics (such as RAM usage, access rates,

resource consumption, etc.) it can be used to collect and manage higher level indicators with little

effort, especially if the indicators are derived from existing data, o metadata associated with KERs.

The system will include in the future a subsystem for collecting metrics directly from users and

patients, through the selection of an open source, pluggable, questionnaire management system,

which will allow the development of FHIR questionnaire definitions, as well as FHIR responses and

inclusion of results in the measurement collection system.

