

Deliverable No. D4.6 Due Date 28/02/2023

Description

D4.6 describes advanced features of the ODIN platform,

specifically the Digital Ledger Technologies, for trustworthy

resource federation, and the Resource Choreographer, for

resource orchestration in use case workflows.

Type Report
Dissemination

Level
PU

Work Package No. WP4
Work Package

Title

CPS-IoT Resource Management

System

Version 1.0 Status Final

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement Nº 101017331

D4.6 Implementation of Advanced CPS-IoT

RSM Features v2

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 2

Authors

Name and surname Partner name e-mail

Anastasia Blitsi CERTH akblitsi@iti.gr

Ilias Kalamaras CERTH kalamar@iti.gr

Vasileios Lolis CERTH vaslwlis@iti.gr

Konstantinos Flevarakis CERTH kostisfl@iti.gr

Konstantinos Votis CERTH kvotis@iti.gr

Pilar Sala MYS psala@mysphera.com

Pablo Lombillo MYS plombillo@mysphera.com

History

Key data

Keywords Digital Ledger Technologies, blockchain, resource federation,

resource choreography, resource workflow design

Lead Editor Anastasia Blitsi (CERTH)

Internal Reviewer(s) UoW, UMCU

Date Version Change

14/11/2022 0.1 Initial draft containing table of contents.

9/01/2023 0.2 First draft

31/01/2023 0.3 Content addition

20/02/2023 0.4 Content addition

28/02/2023 0.5 Peer Review Version

23/03/2023 0.6 Quality Check Version

08/05/2023 1.0 Final Version

mailto:akblitsi@iti.gr
mailto:kalamar@iti.gr
mailto:vaslwlis@iti.gr
mailto:kostisfl@iti.gr
mailto:kvotis@iti.gr
mailto:psala@mysphera.com
mailto:plombillo@mysphera.com

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 3

Abstract
Deliverable D4.6 outlines the advanced features of the ODIN platform, which include two key

components: Digital Ledger Technologies and the Resource Choreographer. Together with D4.2,

these components form the core of ODIN's resource management and interaction capabilities.

The Digital Ledger Technologies component is designed to facilitate trustworthy resource

federation by leveraging blockchain technology to securely share resources between different

ODIN instances. The Resource Choreographer, on the other hand, allows users to create

operational pipelines and workflows that can coordinate the actions of various resources to

achieve specific goals.

This deliverable provides an in-depth description of the architecture and key technologies used

in both components, as well as some use cases where they can be applied.

Overall, this document serves as a comprehensive guide to understanding the Digital Ledger

Technologies and Resource Choreographer components of the ODIN platform, providing insight

into their operation and implementation, as well as offering practical applications for both

components.

Statement of originality
This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made

through appropriate citation, quotation or both.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 4

Table of contents
TABLE OF CONTENTS .. 4

LIST OF TABLES ... 5

LIST OF FIGURES .. 6

ACRONYM GLOSSARY ... 7

1 INTRODUCTION ... 8

1.1 DELIVERABLE CONTEXT .. 9

1.2 OVERVIEW .. 10

2 DIGITAL LEDGER TECHNOLOGIES .. 12

2.1 INTRODUCTION.. 12

2.1.1 Privacy and Trust .. 12

2.1.2 Data pre-screening ... 12

2.2 MAIN TECHNOLOGIES .. 13

2.2.1 Hyperledger Fabric ... 13

2.3 DLT COMPONENTS .. 15

2.3.1 Access component ... 17

2.3.2 Resource component .. 18

2.3.3 DLT API .. 19

2.3.4 Use cases .. 21

3 RESOURCE CHOREOGRAPHER .. 22

3.1 THE RESOURCE CHOREOGRAPHER .. 22

3.2 MAIN TECHNOLOGIES ... 22

3.2.1 KOGITO ... 22

3.3 RESOURCE CHOREOGRAPHER COMPONENTS .. 23

3.3.1 Architecture .. 23

3.3.2 The workflow .. 24

3.4 SITUATIONS THAT CAN BE SOLVED USING THE RESOURCE CHOREOGRAPHER...................... 27

3.4.1 Messages, states, tasks and data types to be used to orchestrate the services with

the RC. 28

4 CONCLUSION AND NEXT STEPS .. 30

5 REFERENCES ... 31

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 5

List of tables
TABLE 1: DELIVERABLE CONTEXT. ... 9

TABLE 2: RESOURCE COMPONENT. ... 19

TABLE 3: ACCESS COMPONENT. ... 20

TABLE 4: USEFUL TASKS DRIVEN BY RESOURCE CHOREOGRAPHER. ... 27

TABLE 5: PROPOSED STATES, TASKS AND EVENTS. .. 28

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 6

List of figures
FIGURE 1: POSITIONING OF THE DIGITAL LEDGER TECHNOLOGIES AND RESOURCE CHOREOGRAPHER

COMPONENTS IN THE ODIN PLATFORM ARCHITECTURE. .. 11

FIGURE 2:THIS IS A GO SOURCE CODE EXAMPLE, THAT DEFINES A CHAINCODE FOR A CAR-RELATED

APPLICATION. THE CODE IS WRITTEN USING THE "CCKIT" LIBRARY WHICH PROVIDES A SET OF TOOLS

TO SIMPLIFY BUILDING CHAINCODE APPLICATIONS IN GO. (1/2) .. 14

FIGURE 3: THIS IS A GO SOURCE CODE EXAMPLE,THAT DEFINES A CHAINCODE FOR A CAR-RELATED

APPLICATION. THE CODE IS WRITTEN USING THE "CCKIT" LIBRARY WHICH PROVIDES A SET OF TOOLS

TO SIMPLIFY BUILDING CHAINCODE APPLICATIONS IN GO. (2/2) .. 15

FIGURE 5: RESOURCE FEDERATION COMPONENT'S ARCHITECTURE. .. 17

FIGURE 6: SEQUENCE DIAGRAM FOR AN EXAMPLE OF RESOURCE FEDERATION’S ACCESS COMPONENT.18

FIGURE 8: COMPONENTS OF RESOURCE CHOREOGRAPHER. .. 23

FIGURE 9: SERVERLESS WORKFLOW TEMPLATE EXPRESSED AS JSON. ... 24

FIGURE 10: SERVERLESS WORKFLOW EXAMPLE 1 OF 2. ... 25

FIGURE 11: SERVERLESS WORKFLOW EXAMPLE 2 OF 2. .. 26

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 7

Acronym glossary

Acronym Definition

AI Artificial Intelligence

API Application Programming Interface

BFT Byzantine Fault Tolerance

BMN Business Modeling Notation

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

BRE Business Rule Engine

BRMS Business Rules Management System

CA Certificate Authority

CPS Cyber Physical System

dApp Decentralized Application

DLT Digital Ledger Technologies

DMN Decision Model and Notation

ESB Enterprise Service Bus

EVM Ethereum Virtual Machine

GDPR General Data Protection Regulation

GUI Graphical User Interface

IDE Integrated Development Environment

IoT Internet of Things

JMX Java Management eXtensions

JVM Java Virtual Machine

KER Key Enabling Resource

OAUTH Open Authorization

OMG Object Management Group

RC Resource Choreographer

REST Representational State Transfer

UI User Interface

XML eXtensible Markup Language

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 8

1 Introduction
This deliverable describes advanced features of the ODIN platform, specifically the Digital Ledger

Technologies, used for trustworthy resource federation, and the Resource Choreographer, used

for resource composition into high-level operational workflows. Together with D4.3

“Implementation of Local CPS-IoT RSM Features v2”, it completes the description of the core

ODIN platform components responsible for resource management and interaction. While D4.3

focused on low-level resource management, such as semantic resource abstraction, resource

communication and metric collection, D4.6 focuses on advanced features that enable the

expansion of the ODIN platform into larger distributed ecosystems and custom high-level

applications and domains.

The deliverable describes two components of the ODIN platform:

● The Digital Ledger Technologies (DLT) component. This component enables resource

federation across ODIN instances in a trustworthy manner. Resource federation is a key

idea of the ODIN platform, allowing its implementation to be distributed, with resources of

one instance (e.g. a hospital, a cloud machine, etc.) being shared by other remote

instances. Resources are valuable assets; therefore, ODIN instances need to ensure that

they are shared in a trustworthy manner. DLT technologies, powered by a blockchain

infrastructure, allow all resource sharing requests and permissions to be handled and all

transactions between ODIN instances to be securely audited, ensuring immutability and

non-repudiation. Section 2 is devoted to the ODIN DLT components.

● The Resource Choreographer component. This component allows the composition of

resources into operational workflows that implement high-level logic. Based on the

semantic abstractions of each resource (i.e. the resource descriptors, described in D4.3,

constructed according to the corresponding entities of the ODIN ontology, described in

D3.3), each resource will possess, among others, a number of input and output data

channels and types. The Resource Choreographer allows the user to design workflows

by connecting the outputs of one resource to the inputs of another. These workflows are

meant to represent high-level business logic for implementing hospital operations, such

as the ones described in the ODIN use cases, by specifying how resources should

communicate with each other. The Resource Choreographer component is described in

Section 3.

For each of the above components, the current deliverable presents the relevant information in

the following structure:

● Requirements review, i.e. which ODIN requirements are fulfilled by each component;

● Architecture review, i.e. how each component fits in the ODIN platform architecture;

● Applicable technologies for the implementation of each component;

● A comparison of the applicable technologies to select the most appropriate ones;

● A list of features to implement in the first version of each component.

At the current stage of the project (end of first year), the development of both components is in

the design phase, with the specification of the requirements, architecture and overall functionality

of each component. Implementation will start from the beginning of the second year.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 9

1.1 Deliverable context
Table 1 provides an overview of the context of the current deliverable, in relation to the project

objectives and foreseen results.

Table 1: Deliverable context.

PROJECT ITEM RELATIONSHIP

Objectives

The deliverable is relevant to ODIN’s Objective 1, as it describes

components that enable the secure and trustworthy decentralized and

federated implementation of the ODIN platform, as well as components

that facilitate the usage of the Key Enabling Resources in hospital

applications, bridging the gap between KER suppliers and healthcare

organizations.

Exploitable results

● The ODIN Digital Ledger Technologies infrastructure for federated

KERs

● The Resource Choreographer component for resource

composition and orchestration

Workplan

D4.6 is attributed to the tasks of WP4 “CPS-IoT Resource Management

System”. Specifically, the tasks involved in the preparation of this

deliverable are T4.4 “Digital Ledger Technologies Resource Federation

and management framework” and T4.5 “Resource Choreographer

module”.

Milestones
D4.6 is a key deliverable of the PROCUREMENT PROCEDURE

SIMULATION (MS2) and IMPLEMENTATION (MS3) phases of the project.

Deliverables

D2.3
ODIN Platform

catalogue

Regarding the available

resources that can be

potentially shared and

orchestrated

D3.3

Hospital Knowledge

Base and ODIN

semantic ontology

Regarding the semantic

resource abstractions

needed for the Resource

Choreographer

D3.4 – D3.6
Privacy Security and

Trust report

Regarding security and trust

concepts related to resource

federation

D3.7 – D3.9
Technical Support Plan

and Operations

Regarding component

documentation

D3.10 – D3.12 ODIN platform

Regarding the integration of

the components in the ODIN

platform

D4.1

CPS-IoT Resource

Management System

Specification

Regarding the requirements

for the DLT and RC

components

D4.2 – D4.4
Implementation of

Local CPS-IoT RSM

Regarding the resource

descriptors and resource

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 10

Features communication channels

needed by the RC and DLT

components

D7.9

Pilot Studies Evaluation

Results and

sustainability

Regarding component

evaluation results of

unit/integration testing.

Risks

The following risks are relevant to this deliverable:

● Technical problems during component/module development

● Risk of time-consuming implementation and integration due to

multiple technologies involved.

Both the DLT and Resource Choreographer components presented in this

deliverable deal with communication between resources from a high-level

perspective, either for sharing or for workflow composition. For this reason,

the risk of delays due to the interconnection of diverse technologies is

always present. The semantic resource abstraction and common

communication through the resource gateway (see D4.3) offer

mechanisms to mitigate this risk.

On the other hand, this deliverable offers components that help mitigating

the following risks:

● Loss of compliance due to a low user acceptance of the system

(by providing means that facilitate the creation of custom high-level

applications and providing a trustworthy substrate for resource

sharing)

● Legal restrictions imposed in the execution of the trials (by

providing secure and trustworthy means for resource sharing)

● Failure to attract proposals for open call (by providing trustworthy

means for sharing resources from open calls with ODIN instances,

and connecting open call resources with native ODIN resources)

1.2 Overview
An overview of the ODIN platform architecture, with the two components described in this

deliverable, the Digital Ledger Technologies and the Resource Choreography, highlighted, is

presented in Figure 1. At the bottom layer lie the Key Enabling Resources, i.e. the robots, IoT

devices, AI services, databases, front-end and back-end services, etc., as well as the existing

Hospital Information System. These are the elements that empower the design of high-level

applications. Resources communicate with each other and with other platform components in two

communication layers: either through the Enterprise Service Bus (ESB), after being semantically

and syntactically transformed to a common data model and a common bus protocol, or through

direct communication with each other, e.g. in intra-robot communication, or for large data

transfer.

The DLT and Resource Choreographer components lie above this layer, at the platform service

level, together with core components such as the ODIN ontology, resource directory, metric

collection and platform management. Both components are connected to the Enterprise Service

Bus, for communicating with resources. Communication with the outer world always passes

through the ODIN Application Programming Interface (API) gateway, which in turn passes

through proper user/service authentication. Details about specific architectural elements of each

component are provided below, in sections 2.2 and 3.2.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 11

Figure 1: Positioning of the Digital Ledger Technologies and Resource Choreographer components in the

ODIN platform architecture.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 12

2 Digital Ledger Technologies
Distributed Ledger Technologies (DLTs) are systems for securely recording and sharing data and

transactions in a decentralized manner. They use decentralized networks, cryptographic

algorithms, and consensus mechanisms to create a secure, transparent, and tamper-resistant

digital ledger that can be shared among multiple participants. Examples of DLTs include

blockchain-based systems such as Bitcoin and Ethereum, as well as Hyperledger Fabric, which

is going to be used in the ODIN platform. DLTs have the potential to transform a wide range of

industries by providing a secure and efficient way of tracking and exchanging digital assets and

information, while reducing the need for intermediaries and increasing trust and transparency.

2.1 Introduction
This chapter provides an overview of the key concepts and technologies involved in building ODIN

platform using Distributed Ledger Technologies (DLTs). It includes information about Hyperledger

Fabric, the CCKit, and a description of the DLT components that will be used to create a secure

and efficient system for managing patient data and medical records. The chapter serves as an

introduction to the technical foundations of ODIN platform and provides a deeper understanding

of the underlying technologies that enable the platform to achieve its goals of improved security,

transparency, and efficiency in healthcare.

2.1.1 Privacy and Trust

Several strategies are offered to provide security, privacy, and trust management in health care

networks, as mentioned in D3.5 Privacy Security and trust v2. Recently, blockchain technology

has been advocated as an important component of several methods to establish a safe, private,

and trustworthy environment. Blockchain is an immutable ledger that is often executed without a

central repository and without a central authority. It is a new trend in the field of safeguarding

shared information across many organizations in a network.

The primary benefits of blockchain are decentralization, trust, transparency, anonymity, and non-

repudiation. The ledger is maintained by various network nodes, resulting in a distributed network

architecture. Through the consensus process, trust can be established without the involvement

of a trusted third party. Once uploaded to the blockchain, its segments, or blocks, are difficult to

edit, resulting in non-repudiation.

Blockchain validates and stores data using cryptographically linked block structures, produces

and updates data with consensus methods, and programs and alters data using smart contracts.

The whole network is working to achieve an agreement on the most recent block to be put to the

blockchain.

2.1.2 Data pre-screening

Privacy, trust, and decentralisation will be addressed via the implementation of DLT-related

components in ODIN. DLT is well-known for (i) decentralizing IoT network operations, (ii) providing

a stable state for IoT devices, (iii) being resistant to change, (iv) providing anonymity, and (v)

creating data immutability.

A permissioned blockchain will run among a set of known, identified, and verifiable participants

and will be managed by a system that generates a certain amount of trust. The permissioned

network offers flexibility since the business case can determine the number of participants, driving

the adoption of a private blockchain with one organization or a consortium blockchain with several

organizations. Each participant may have varying levels of access, so only authorized people may

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 13

publish. Furthermore, in such a permissioned environment, the likelihood of a participant

purposely inserting dangerous code via a smart contract is lowered. The elimination of potentially

damaging occurrences is achieved, since all DLT transactions are recorded on the blockchain in

line with an endorsement policy specified for the network and relevant transaction type. Rather

than being completely anonymous, the perpetrator may be easily identified, and the matter

treated in accordance with the standards of the governance model. Additionally, data will be

pushed to the blockchain via transactions, ensuring that all acts are recorded on the ledger.

Finally, data must follow a precise format established by the smart contracts or they will be

rejected.

Data pre-screening is a crucial step in the process of logging data on a distributed ledger

technology (DLT) system. It involves thoroughly checking and verifying the data to ensure that it

adheres to the predetermined format and meets the specific requirements set by the smart

contract. This process helps to ensure the integrity and accuracy of the data that is recorded on

the DLT, as well as to prevent any errors or inconsistencies from being introduced into the system.

By conducting thorough data pre-screening, instances can maintain the trust and transparency

of the DLT, and ensure that all recorded data is secure, reliable, and accessible for future use.

Thereby, data must conform to a predetermined format in order to be recorded on the distributed

ledger technology (DLT). This format is established beforehand so that the smart contract is

configured to receive and process only that specific format.

2.2 Main Technologies

2.2.1 Hyperledger Fabric

Hyperledger Fabric (HLF) is an open source permissioned blockchain developed by the Linux

Foundation that is distinguished from other systems by its innovative transaction architecture,

known as the Execute-Order-Validate architecture. This new design replaces the old order-

execute model utilized by all previous platforms. In order-execute architecture, transactions are

first arranged depending on the consensus protocol. Then, in the execution phase, each peer

processes transactions consecutively and in the same sequence. Furthermore, another feature

that distinguishes HLF is its support for general-purpose programming language smart contracts,

or chaincodes as HLF refers to them. Smart contracts in platforms that follow the order-execute

architecture must be deterministic, which is why some networks need smart contracts to be

written in a Domain-Specific Language (DSL) to reduce non-deterministic processes.

In addition, Hyperledger Fabric is a permissioned blockchain framework that provides numerous

advantages concerning the environment. One of the most significant benefits is its energy

efficiency compared to other blockchain platforms that use PoW consensus mechanisms.

Hyperledger Fabric's consensus mechanism is less energy-intensive, reducing the carbon

footprint associated with blockchain operations. Additionally, Fabric's scalability enables it to

handle a large number of transactions simultaneously, reducing energy consumption and carbon

footprint. Its modular architecture further enhances its flexibility and customization options,

allowing users to optimize their systems for energy efficiency and further reduce their carbon

footprint. Overall, these advantages make Hyperledger Fabric a sustainable and eco-friendly

choice for blockchain applications.

Hyperledger Fabric Chaincode Kit (CCKit) is an open-source toolkit for developing and deploying

chaincode (smart contracts) on the Hyperledger Fabric platform. It provides developers with a

set of abstractions and libraries that simplify the process of writing and deploying chaincode.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 14

CCKit helps to reduce the amount of boilerplate code needed for chaincode development, making

it easier for developers to focus on the business logic. Additionally, it offers a suite of testing tools

to ensure the reliability and security of chaincode, as well as support for multiple programming

languages such as JavaScript, Go, and TypeScript. CCKit streamlines the chaincode

development process and helps to enhance the overall performance and security of Hyperledger

Fabric-based applications.

An example of chaincode about cars, in Golang, is as follows:

Figure 2:This is a Go source code example, that defines a Chaincode for a car-related application. The

code is written using the "cckit" library which provides a set of tools to simplify building Chaincode

applications in Go. (1/2)

The Chaincode is defined as a Router, which allows the application to handle multiple methods

(endpoints) for reading and writing data on the blockchain network.

The Chaincode has four main components:

• Constants for the entity name (CarEntity) and event name (CarRegisteredEvent)

• A struct type (CarPayload) that represents the argument for the Register method

• A struct type (Car) that represents the data for the cars stored in the chaincode state

• A function named "New" that creates and returns a new Router (Chaincode) object with

defined methods:

• Init: initializes the chaincode's state to contain the identity of its creator as the owner

• Query Car: retrieves information about a car by its ID

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 15

• Query Cars: retrieves a list of all cars

• Invoke Car Register: registers a new car, inserting its information into the chaincode

state, and triggers two events (CarRegisteredEvent and CarRegisteredEvent)

Figure 3: This is a Go source code example,that defines a Chaincode for a car-related application. The

code is written using the "cckit" library which provides a set of tools to simplify building Chaincode

applications in Go. (2/2)

2.3 DLT components
A Distributed Ledger Technology (DLT) component is a building block or a software module that

contributes to the overall functionality and structure of a DLT system. DLT components can

include consensus algorithms, data storage systems, cryptographic algorithms, network

communication protocols, and smart contract execution engines. These components work

together to enable secure and transparent record-keeping, processing, and transfer of data and

assets in a decentralized manner.

From the platform/consumer perspective, DLT components in the ODIN platform provide the

infrastructure necessary for secure, transparent, and efficient record-keeping, processing, and

transfer of data and assets in a decentralized manner. These components enable the creation of

decentralized networks that can provide greater security, efficiency, and scalability compared to

traditional centralized systems. In the context of ODIN, DLT components are used to enable

secure and efficient collaboration among hospitals and healthcare organizations.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 16

The main problem that DLT components aim to solve in the ODIN platform is the lack of

interoperability and trust between different healthcare systems and organizations. This can result

in inefficiencies, delays, errors, and reduced patient outcomes. By using DLT components such

as consensus algorithms, data storage systems, cryptographic algorithms, network

communication protocols, and smart contract execution engines, ODIN can create a

decentralized network that enables secure and transparent record-keeping, processing, and

transfer of data and assets.

These components work together to enable resource federation, which allows for the sharing of

computing resources across different hospitals and organizations. This can help to reduce costs,

increase efficiency, and improve patient outcomes. Additionally, DLT components can enable

privacy-preserving smart contracts that allow hospitals to share data while keeping sensitive

information confidential. This can help to protect patient privacy and comply with data protection

regulations such as HIPAA.

Overall, the use of DLT components in the ODIN platform aims to solve the problem of

interoperability and trust among different healthcare systems and organizations, and to enable

secure and efficient collaboration that can improve patient outcomes.

Resource federation will have two subcomponents (DLT components): the access component

and the resource component. The main functions of these components are similar, but there is a

crucial difference: the access component records access requests which are requested to get

access to a database of another hospital for example, while the resource component records

resource requests which are requests to use a resource, like equipment of another department

for example. However, in the access component, if an access request is granted and the

transaction is recorded in the blockchain, this transaction can be used for future reference. For

example, if someone requests access to a GPU for a week and the request is granted, the GPU

administrator can check the blockchain transaction the following week to see if access should still

be granted. If the week has passed, the administrator will be able to see from the transaction that

access should no longer be granted, so the request will be denied.

The architecture of DLT components is as follows: a DLT component consists of an ordering

service, certificate authorities (CAs), smart contracts, and a gateway for communication with the

outside world. The ordering service and CAs are part of the blockchain network, and the functions

of these components are defined in the smart contracts.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 17

Figure 4: Resource federation component's architecture.

The ordering service in Hyperledger Fabric is responsible for ordering and distributing transaction

data to all peers in a network. It is a critical component of the Hyperledger Fabric system and

ensures that all transactions are properly ordered and recorded in the ledger.

Certificate Authorities (CAs) are entities that issue digital certificates to validate the identity of

participants in a Hyperledger Fabric network. They play an important role in ensuring the security

and privacy of transactions on the network by verifying the identity of participants and encrypting

communications between them.

Smart contracts in Hyperledger Fabric are also known as chaincode and are used to define the

rules and logic for transactions in the network. They are self-executing contracts with the terms

of the agreement directly written into code. They automate the process of verifying and executing

transactions, reducing the need for manual intervention and ensuring a high level of trust and

transparency in the network. In ODIN platform, smart contracts are used to make all the recording

of the transactions and the queries to the ledger possible. Both access component and resource

component use smart contracts to enable functionalities and interaction with the blockchain

network.

2.3.1 Access component

This component will log critical actions that happen during the data exchange between ODIN

stakeholders to allow for transparency, auditing, non-repudiation and accountability of actions

during the data exchange. In Figure 5 there is an example of this data exchange.

It will also log access requests and identified security events to help to provide digital evidence

and resolve conflicts between stakeholders, when applicable. If any requirement of filtering prior

to logging, a filtering module will be considered to be deployed. The DLT API is the candidate

component for performing any filtering.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 18

When a department wants to access something, e.g. a database, the request as well as the

transaction of granting access, are recorded in the ledger of the blockchain.

An example of an input that the access component will receive, in a json format, is as follows:

sender: "id_of_sender",

receiver: "id_of_receiver",

request: "GPU",

timestamp: "1675418872"

The decision-making process to determine the specific contents of the ID’s (sender and receiver)

will be undertaken in the next phase of the project, along with other important processes that are

still being finalized. Updates will be provided on the progress of this process, and once the

conclusions are finalized, they will also be included in the project documentation regarding the ID

requirements.

An example of an access request is shown in Figure 5. An instance wants to make a request to

access a pre-trained AI model. The instance's gateway forwards the request to the resource

federation, and the request is recorded in the ledger. If the request is granted, the AI can see it

through the ESB and provide access. If the request is denied, the instance receives an "ACCESS

DENIED" message.

Figure 5: Sequence diagram for an example of resource federation’s access component.

2.3.2 Resource component

This enabler will log essential activities that occur amongst ODIN stakeholders during resource

exchange to provide for transparency, auditing, non-repudiation, and accountability of actions.

When necessary, it will also track resource requests and recognized security incidents to assist

in providing digital proof and resolving issues amongst stakeholders.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 19

When a department wants to use a resource of another department or hospital, the request as

well as the transaction of granting the resource, are recorded in the ledger of the blockchain.

An example of an input that the resource component will receive, in a json format, would be as

the following:

 sender: "id_of_sender",

 receiver: "id_of_receiver",

 resource: "lorazepam",

 timestamp: "1675418872"

An example of a resource request is following the same process as in Error! Reference source

not found.. An instance wants to make a request to access an IoT sensor. The instance's gateway

forwards the request to the resource federation, and the request is recorded in the ledger. If the

request is granted, the IoT sensor can see it through the ESB and provide access. If the request

is denied, the instance receives an "ACCESS DENIED" message.

2.3.3 DLT API

In order to log a transaction, an instance has to make a post request to the API of the resource

component. The API then will send the DLT block, where the transaction proposals will be sent to

peers, owned by the organizations, specified by the smart contract endorsement policy. The

transaction proposal serves as input to the smart contract, which uses it to generate an endorsed

transaction response, which is returned by the peer node to the client application (API).

It’s these transactions responses that are packaged together with the transaction proposal to

form a fully endorsed transaction, which can be distributed to the entire network.

Resource federation will have two components, access component and resource component, to

handle the two types of requests. Bellow there are two tables, one for each component’s API that

presents how each of them can be accessed by other components.

Table 2: Resource component.

Component Resource component

Function name Add resource

Description Adds a resource to the resource catalogue.

Inputs Name Type Description

sender string The sender’s ID, whether this is a

name, a company name, a

department or a combination of the

above.

receiver string The receiver’s ID, whether this is a

name, a company name, a

department or a combination of the

above.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 20

resource string The name of the resource to add.

Also, if the sender wants can add

more information here (e.g. a

description).

 timestamp Timestamp The time and date in timestamp

format.

Name Type Description

success boolean Whether the operation finished

successfully.

Table 3: Access component.

Component Access component

Function name Add access request

Description Adds a request to the request catalogue.

Inputs Name Type Description

sender string The sender’s ID, whether this is a

name, a company name, a

department or a combination of the

above.

receiver string The receiver’s ID, whether this is a

name, a company name, a

department or a combination of the

above.

 request string The ID of the item that the sender is

requesting to access (e.g. the name

of an AI model). Also, if the sender

wants can add more information

here (e.g. a description).

 timestamp Timestamp The time and date in timestamp

format.

Outputs Name Type Description

success boolean Whether the operation finished

successfully.

error string An error message in case of an

unsuccessful operation.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 21

2.3.4 Use cases

DLT can be applied in many use cases. Some of them are listed below:

• Trustworthy data sharing for partners reluctant to share data due to privacy concerns. If a

hospital has personal information about a patient’s condition and that patient is in a different

hospital, the first hospital can share patient’s information safely.

• Support federated learning AI data sharing, which is described in more details in D6.4 and

D6.6. The main instance has the permission to access a model of another instance. Different

departments of the same hospital or even another hospital, can have access to the same AI

model.

• Support hospital-to-hospital sharing of data and services. If a hospital has minimum resources

and a big event occurs (e.g., a big road accident or a building collapse (RUC c)) needs access

to another’s hospital resources (e.g., medical equipment, GPUs, etc.), it can request access

to these resources.

• Support within-hospital sharing of services:

• Sharing between separate instances within the same hospital, e.g., medical and research

departments. The research department can work on the development of diagnostic and

therapeutic modalities associated to vitreo-retinal surgery, so the medical department

shares its data during the development and it can benefit from the results after.

• Domiciliary hospitalization (i.e., at home). A hospital makes a request to access a home’s

data, that has the ODIN platform installed. A patient that is in a coma condition can be in

his family home with an ODIN platform installed to record or help with his condition. The

hospital requesting access to the patient’s information can detect any changes in patient’s

health (e.g., lack of nutrients).

• Support the use of remote (cloud or hospital) resources. If a hospital doesn’t have enough

processing power, it can make an access request to a cloud service (e.g., for emergency

situations).

• Support data and service sharing of campaign hospitals, e.g., created on the spot during

a war.

• Support sharing other kinds of resources (not KERs), e.g., drugs, between hospitals or

departments.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 22

3 Resource Choreographer

3.1 The Resource Choreographer
The resource choreographer is the service enabling the orchestration of the KER and services to

achieve new business objectives.

Using visual tools or defining workflows and rules with standard BPMN and BMN notation, users

with some technical training but also business users, will define new services, workflows and

business cases, using currently available resources from the platform.

The Resource Choreographer enables hospitals to adopt technologies in a faster way as new

technologies can be reused beyond its specific purpose, being integrated in flows that enable

new use cases. Such advantage makes easier the procurement decisions as the money spent in

a specific solution can be recovered before.

Resource Choreographer will help automating tasks, acting upon alarms and notifications that will

fire the workflows and managing the resources states.

3.2 Main technologies

3.2.1 KOGITO

Kogito is a cloud-native business automation technology for building cloud-ready business

applications. Kogito is optimized for a hybrid cloud environment and adapts to your domain and

tooling needs. The core objective of Kogito is to help to adapt a set of business processes and

decisions into the domain-specific cloud-native set of services.

In concrete ODIN is very interested on using Kogito both as a normal workflow and as a Serverless

workflow because the Serverless Workflow enables defining declarative workflows that control

event-driven, serverless applications.

Serverless Workflow orchestration is aimed to define logical steps of execution declaratively (no

code) for cloud-native services. Service orchestration can be achieved using process diagrams

in Business Process Model and Notation (BPMN), but, the Serverless Workflow is more focused

on function-level steps of execution, and not in business logic. Serverless Workflow is also perfect

for microservice orchestration and allows writing workflows in formats (JSON or YAML) that could

be better tailored for developing applications in cloud or container environments with a serverless

mindset.

Each of the approaches will be used where needed. For example, an emergency or disaster

preparedness case (RUC C) could be implemented using both approaches, but a workflow based

on BPMN could manage more complex cases with several roles performing approvals.

Logistic use cases such as RUC B UC1, or Medical location use cases from RUC B UC2 can take

better advantage of Serverless Workflows.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 23

3.3 Resource Choreographer components

3.3.1 Architecture

Kogito can use REST API call to use external services, but also can interact with messages coming

from and also send messages to Kafka, which is the implementation for the ESB pointed in the

architecture, defined in D3.11 ODIN Platform and worked on T4.2. This is very important and to

understand how Kogito interacts with the ODIN ESB, the following diagram is included.

Figure 6: Components of Resource Choreographer.

Kogito will run several workflows that will interact with the rest of ODIN platform using the add-on

provided by Kogito to connect to Kafka, which allows publish and subscribe to messages. This

interaction drives the behaviour of acting upon events received, the workflow processing and

actions taken and followed by components receiving the messages forwarded by Kogito.

It is important to remark that messages coming to and from Kogito, must follow CloudEvents1

specification. This requirement perhaps is too hard to be followed by all the components, as it

forces messages to be less than 64KB. Therefore, to minimize dependencies, a group of

Connectors would be placed to transform the messages and interact with more topics and the

Resource Choreographer. Messages do not have any other model limitation beyond the memory

footprint.

Kogito also could use direct service API calls when available and needed in case no integration

through the ESB is available. As an example, under RUC A we have rehabilitation use case, where

1 https://cloudevents.io/

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 24

a patient must perform a several exercises and an AI controls the execution. Once the exercise

is performed, the Resource Choreographer gets the results from the AI. Finally, the Resource

Choreographer it determines with a rule if the exercise has been performed ok or not. The results

then could be sent to the hospital HIS to integrate the data into patient’s medical record history.

To send the information to the HIS, it could be performed with a direct call using the HIS API, for

example using FIHR protocol.

3.3.2 The workflow

The workflow specification can be expressed as a JSON file following this template:

Figure 7: Serverless Workflow template expressed as JSON.

Functions, events, and states are the minimal components for defining the orchestration

behaviour for the services. The workflow definition can be expressed using only one or all type of

components. The component are as follows:

• The Functions definitions are reusable components that can be used to define invocation

information about services that could be invoked during workflow execution.

• The Events definitions are reusable components that define all consumed and produced

events during workflow processing.

• The State definitions allow to define the workflow states and determine what the workflow

should do.

Using the definitions, Kogito can generate scaffolds for some services and orchestrate them.

In the following pictures, a workflow to control a rehabilitation session and decide if the exercises

were performed correctly is presented using the events and states defined of the use case.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 25

Figure 8: Serverless Workflow example 1 of 2.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 26

Figure 9: Serverless workflow example 2 of 2.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 27

3.4 Situations that can be solved using the Resource

Choreographer
A list of useful tasks that can be driven by the Resource Choreographer (RC) is here to understand

more in depth its responsibility. On the other hand, it must be remarked that the RC is capable of

solving new UC using KER capabilities as long as they expose the right features to do so.

Table 4: Useful tasks driven by Resource Choreographer.

Use Case Workflow Description

Disaster Preparedness Evacuation plan In case of fire or any disaster that

requires evacuation, the RC could

send the right messages to the

KERS. Robots and people could be

driven to a safe place.

AI Management Workflow to define an AI

behaviour

With AI usual tasks for a processing

workflow, the users could define

workflows to treat any kind of data

and problem. The workflow could

indicate when to start, what data to

pick, the actions to be taken and the

place where the results should be

placed.

AI Management Training Workflow The resource choreographer can

schedule when a new training should

be performed and which data use.

For example, in case several bad

classifications or problems with a

model are detected manually or

automatically, the RC can call the AI

to perform an automated training

and enhance the model.

RUC A Delivery and reposition

management

In case there is a lack of any fungible

material, such as catheter, towels,

etc in a service, a user or an

automated alarm could trigger a

workflow that automates calling a

robot to replenish the material.

General management Activate/Deactivate KER’s Controlling activation or deactivation

of a KER could potentially be

managed from the RC

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 28

3.4.1 Messages, states, tasks and data types to be used to orchestrate the

services with the RC.

In the following table, several states, tasks and events are proposed to tackle some of the previous

use cases.

Table 5: Proposed states, tasks and events.

Workflow Events Tasks State Description

Evacuation

plan

securityEvent,

securityApproval,

performEvacuation

approveEvacuati

on

WaitSecurityEve

nt,

waitEvacuationA

pproval,

prepareEvacuati

on

The workflow

would be waiting

for a

securityEvent that

could came from

any AI or IoT

system. Then, it

would wait for a

human approval,

and upon

approval it would

send messages to

performEvacuatio

n.

Delivery and

reposition

management

newOrder,

fungibleAvailable,

fungibleNotAvailable

, performTask

CheckFungible,

checkRobot,

sendRobot

waitForOrder,

waitForFungible,

waitForRobot

The workflow can

be waiting for a

new order. Then

checks for the

fungible. Then

requests a robot

and finally sends

the robot to finish

the task.

Creating or

updating new

documentation

newKER updateDocumen

tation

waitForNewKer The workflow

would wait to

receive a

message

confirming a new

KER. Then would

request the

Documentation

component to

update the

documentation.

Activate /

Deactivate

KER’s

deactivateKER,

activateKER

executeTask WaitForKerMana

gement
The admin could

request to

deactivate or

activate a KER,

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 29

sending a

deactvateKER

message. Then

the

choreographer

would send a task

to the KER to

disconnect

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 30

4 Conclusion and next steps
Two of the major objectives of the ODIN project are decentralization of the platform

implementation and narrowing the gap between resource providers and healthcare organizations.

The components described in this deliverable attempt to address these two objectives:

● The Distributed Ledger Technologies (DLTs) provide a decentralized and secure method

for recording and sharing data and transactions. DLTs, such as blockchain-based

systems like Bitcoin and Ethereum, have the potential to transform various industries by

offering a tamper-resistant digital ledger that can be shared among multiple participants,

thus reducing the need for intermediaries and increasing trust and transparency. In the

case of the ODIN platform, DLT-related components are implemented to address privacy,

trust, and decentralization. The use of a permissioned blockchain with verified participants

and an endorsement policy ensures that data is secure and reliable, while data pre-

screening is a critical step to ensure the integrity and accuracy of the recorded data. By

adopting DLTs, ODIN platform is able to offer improved security, transparency, and

efficiency in healthcare.

● The Resource Choreographer component provides a way for users, technical users but

also business users such as medical staff or hospital manager, to design custom

application workflows that make use of the available resources and target specific use

case scenarios. This narrows the gap between resource providers and healthcare

organizations, since new resources can readily be embedded in new applications

designed by the healthcare authorities.

This deliverable is following (D4.5) as the second version in a series of three deliverables. While

the first version was focusing on the design of the two components by introducing architectural

elements, functionality and technology survey, this version is covering the actual development of

the components, further analysing their functionalities and architecture, outlining the adopted

technologies and introducing the corresponding workflows of the components. The third and final

version of the deliverable (D4.7) will conclude the development of the components in their final

version with the integration in the RUC’s.

This version is also introducing real use cases where the DLT and RC components have a crucial

role, by associating the functionalities of the components in a hospital environment with the RUCs

that will be implemented in the ODIN project. With regards to the implementation of the project

the next steps will be focusing on the adoption and integration of DLT and RC components by the

ODIN platform, by putting them in to practice under the RUCs scenarios.

 Deliverable D4.6 – Implementation of Advanced CPS-IoT RSM Features v2

Version 1.0 I 2023-05-08 I ODIN © 31

5 References
[1] Nofer, M., Gomber, P., Hinz, O., & Schiereck, D. (2017). Blockchain. Business &

Information Systems Engineering, 59(3), 183-187.

[2] Swanson, T. (2015). Consensus-as-a-service: a brief report on the emergence of

permissioned, distributed ledger systems. Report, available online.

[3] Monrat, A. A., Schelén, O., & Andersson, K. (2019). A survey of blockchain from the

perspectives of applications, challenges, and opportunities. IEEE Access, 7, 117134-

117151.

[4] Theodouli, A., Arakliotis, S., Moschou, K., Votis, K., & Tzovaras, D. (2018, August). On

the design of a blockchain-based system to facilitate healthcare data sharing. In 2018

17th IEEE International Conference On Trust, Security And Privacy In Computing And

Communications/12th IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE) (pp. 1374-1379). IEEE.

[5] Azaria, A., Ekblaw, A., Vieira, T., & Lippman, A. (2016, August). Medrec: Using blockchain

for medical data access and permission management. In 2016 2nd international

conference on open and big data (OBD) (pp. 25-30). IEEE.

[6] Benchoufi, M., & Ravaud, P. (2017). Blockchain technology for improving clinical

research quality. Trials, 18(1), 1-5.

[7] Nugent, T., Upton, D., & Cimpoesu, M. (2016). Improving data transparency in clinical

trials using blockchain smart contracts. F1000Research, 5.

[8] IBM. What are smart contracts on blockchain? Source. Accessed on 18 March 2022.

[9] Ethereum. Introduction to smart contracts. Source. Accessed on 18 March 2022.

[10] Szabo, N. (1997). Formalizing and securing relationships on public networks. First

monday.

[11] Mik, E. (2017). Smart contracts: terminology, technical limitations and real world

complexity. Law, Innovation and Technology, 9(2), 269-300.

[12] Nzuva, S. (2019). Smart contracts implementation, applications, benefits, and

limitations. School of Computing and Information Technology, Jomo Kenyatta University

of Agriculture and Technology, Nairobi, Kenya.

https://www.ibm.com/topics/smart-contracts
https://ethereum.org/en/developers/docs/smart-contracts/

